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Competences
data and AI-solutions based on Microsoft technologies
development and operation of cloud/on-prem platforms
corporate information design (IBCS) 

Team
small but capable team of experienced data analytics consultants
self-organized team without typical hierarchies
agile project approach with close customer coupling



Speaker
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Tarek Salha

▪ Senior Consultant, at Ceteris AG since 2015

▪ Msc. Physics

▪ Topics:
• Data Warehousing

• Advanced Analytics

• Data Lake Architectures

• Definitely no specialist for 
visualization

Thorsten Huss

▪ Msc. Business Informatics

▪ Started at Ceteris AG in 2013 as student
employee, now Senior Consultant

▪ Topics:
• Data Integration

• …but pretty much
everything ETL,
really.
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What is …?
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What is Apache Spark?

▪ Apache Spark is an analytics software framework, that combines cluster data processing and AI

▪ One of the most actively developed open source big data projects



What is Databricks?

▪ Databricks is a company (original creators of Apache Spark)

▪ They offer a fast, easy and secure PaaS service to perform Spark operations



How is Databricks working in Azure?



What is Delta Lake?

▪ Delta Lake is an open-source storage layer that brings ACID transactions and other relational 
database features to Apache Spark (on top of it).

▪ It provides:
• ACID transactions

• Time travel

• Open-source storage format

• Streaming sources and sinks

• Schema enforcement as well as evolution

• Audit History

• Update / delete commands



How does Delta Lake ACID principle work?

▪ Delta Lake guarantees atomicity and 
consistency via the so-called 
transaction log

“If it’s not recorded in the transaction 
log, it never happened.”

▪ It provides serializability as level of 
isolation

▪ Durability is automatically conserved 
due to all information being written 
directly to disk



Transaction Log
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Delta Lake 101
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Create Table

Tables are just references and metadata



Insert Into



Update / Merge



Delete



Drop Table / Optimize / Vacuum



Traveling in time
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„Time traveling? As if…“ – „AS OF“!

▪ Go back to the state of a table at a specific timestamp or table version

▪ Scala/Python: spark.read.(…).option(„timestampAsOf“,“2020-07-02“).load(„myPath“)

▪ SQL: SELECT * FROM myTable VERSION AS OF 1
• View table versions and audit information with DESCRIBE HISTORY (or just use the UI)

▪ Use Cases: Rollbacks, time series analytics, pinned views,…

(Unfortunately, you can really just go to the past and back to the future, aka the present)



Creating and writing streams
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Creating a stream from different sources…

▪ Get a Databricks cluster up and running (and add any configs and libraries before you start it up)

▪ Before you stream anything to delta, configure your Gen2 storage and a mounting point

▪ Think about creating „external“ tables (i.e. not managed by Databricks) beforehand

▪ Prepare source configuration
• File names/locations

• EventHub endpoint

• SQL Server jdbc drivers

• …
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… and write it to a delta table

▪ Basic scala syntax:

insertDF.writeStream

.format("delta")

.outputMode("append")

.option("checkpointLocation", "/mnt/MountFolder/TableName/_checkpoints/etl-from-json")

.start("/mnt/MountFolder/TableName") //or table(„TableName„)

.trigger(Trigger.Once)

.partitionBy(„PartitionColumn1",„PartitionColumn2")

▪ Output  options:
• append – default, appends rows to existing or newly created table

• complete – replace the entire table

• update – only writes rows that have changed since last trigger (only used with aggregations)

▪ Trigger options:
• Trigger.Once – triggers exactly once and then stops the stream (in theory…)

• Trigger.ProcessingTime("60 seconds") – triggers in given interval (can be anything from ms to days)

• Default: behaves as if ProcessingTime set to 0 ms, tries to fire queries as fast as possible
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Power BI Visualization
on Delta Tables
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How to connect to Databricks?

1. Get a personal access token

2. Get your cluster’s server hostname, port, and HTTP path

3. Construct the server address to use in in Power BI Desktop
a. Use the schema https://

b. Append the server hostname after the schema

c. Append the HTTP path after the server host name

→ https://westeurope.azuredatabricks.net/sql/protocolv1/o/0123
456789/0123-456789-sometext

4. In Power BI use Spark connector and use
a. „token“ as username

b. personal access token as password

It supports Import AND DirectQuery models!

https://westeurope.azuredatabricks.net/sql/protocolv1/o/0123456789/0123-456789-sometext


How to connect to Databricks?



Streaming DWH Demo
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What this demo will show (if there‘s enough time)

▪ Streaming from EventHub storage all the way to Synapse

▪ Joins in streams

▪ Watermarking

▪ How to actually write to tables in Synapse and why we ended up needing a classic blob storage

▪ Including user-defined functions

▪ Handling late-arriving data and SCD2



Scenario and source

▪ Demo available by following instructions on blog by Nicholas Hurt:

https://medium.com/microsoftazure/an-introduction-to-streaming-etl-on-azure-databricks-using-
structured-streaming-databricks-16b369d77e34

▪ …though of course we had to simplify and change it up a bit
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https://medium.com/microsoftazure/an-introduction-to-streaming-etl-on-azure-databricks-using-structured-streaming-databricks-16b369d77e34


Windows

▪ Define windows for aggregations
• Tumbling window
windowedAvgSignalDF = \

eventsDF \

.groupBy(window("eventTime", "5 minutes")) \

.count()

• overlapping window
windowedAvgSignalDF = \

eventsDF \

.groupBy(window("eventTime", “10 minutes", "5 minutes")) \

.count()
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Source: 

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html


Watermarking

▪ States:

▪ How to prevent inevitable memory overflow?
• .withWatermark(„eventTime“,“10 minutes“)

30

Source: 

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html


Joins in delta streams

▪ Due to data continuously streaming, joins have to be reimagined a bit

▪ For every row of table a, there could always arrive a row in table b that matches

▪ For left joins, you cannot ever tell if there will be no match and result has to be NULL

▪ Solution: use watermarks to determine how long the join operation waits for matches!
• Define watermark delays on inputs
• Define event-time range conditions on join operator

// Define watermarks
val impressionsWithWatermark = impressions

.select($"adId".as("impressionAdId"), $"impressionTime")    

.withWatermark("impressionTime", "10 seconds ")   // max 10 seconds late

val clicksWithWatermark = clicks
.select($"adId".as("clickAdId"), $"clickTime")    
.withWatermark("clickTime", "20 seconds")        // max 20 seconds late

// Inner join with time range conditions
display(

impressionsWithWatermark.join(
clicksWithWatermark,
expr(""" 

clickAdId = impressionAdId AND 
clickTime >= impressionTime AND 
clickTime <= impressionTime + interval 1 minutes
"""

)
)

)
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thuss@ceteris.ag

tsalha@ceteris.ag

LinkedIn:

https://www.linkedin.com/in/thorstenhuss/

https://www.linkedin.com/in/tarek-salha-2a39ab189/

Web: www.ceteris.ag
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Questions?
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