
An Introduction to

Azure Delta Lake using Databricks

1

Ceteris AG

Partners

itacs GmbH

Microsoft Goldpartner
Microsoft Power BI Partner

Azure Marketplace und Microsoft AppSource Publisher

Certified Cubeware Partner

Certified Zebra BI Partner

GAPTEQ Partner

graphomate Partner

2

Competences
data and AI-solutions based on Microsoft technologies
development and operation of cloud/on-prem platforms
corporate information design (IBCS)

Team
small but capable team of experienced data analytics consultants
self-organized team without typical hierarchies
agile project approach with close customer coupling

Speaker

3

Tarek Salha

▪ Senior Consultant, at Ceteris AG since 2015

▪ Msc. Physics

▪ Topics:
• Data Warehousing

• Advanced Analytics

• Data Lake Architectures

• Definitely no specialist for
visualization

Thorsten Huss

▪ Msc. Business Informatics

▪ Started at Ceteris AG in 2013 as student
employee, now Senior Consultant

▪ Topics:
• Data Integration

• …but pretty much
everything ETL,
really.

Agenda

4

What is …?

5

What is Apache Spark?

▪ Apache Spark is an analytics software framework, that combines cluster data processing and AI

▪ One of the most actively developed open source big data projects

What is Databricks?

▪ Databricks is a company (original creators of Apache Spark)

▪ They offer a fast, easy and secure PaaS service to perform Spark operations

How is Databricks working in Azure?

What is Delta Lake?

▪ Delta Lake is an open-source storage layer that brings ACID transactions and other relational
database features to Apache Spark (on top of it).

▪ It provides:
• ACID transactions

• Time travel

• Open-source storage format

• Streaming sources and sinks

• Schema enforcement as well as evolution

• Audit History

• Update / delete commands

How does Delta Lake ACID principle work?

▪ Delta Lake guarantees atomicity and
consistency via the so-called
transaction log

“If it’s not recorded in the transaction
log, it never happened.”

▪ It provides serializability as level of
isolation

▪ Durability is automatically conserved
due to all information being written
directly to disk

Transaction Log

11

Delta Lake 101

12

Create Table

Tables are just references and metadata

Insert Into

Update / Merge

Delete

Drop Table / Optimize / Vacuum

Traveling in time

18

„Time traveling? As if…“ – „AS OF“!

▪ Go back to the state of a table at a specific timestamp or table version

▪ Scala/Python: spark.read.(…).option(„timestampAsOf“,“2020-07-02“).load(„myPath“)

▪ SQL: SELECT * FROM myTable VERSION AS OF 1
• View table versions and audit information with DESCRIBE HISTORY (or just use the UI)

▪ Use Cases: Rollbacks, time series analytics, pinned views,…

(Unfortunately, you can really just go to the past and back to the future, aka the present)

Creating and writing streams

20

Creating a stream from different sources…

▪ Get a Databricks cluster up and running (and add any configs and libraries before you start it up)

▪ Before you stream anything to delta, configure your Gen2 storage and a mounting point

▪ Think about creating „external“ tables (i.e. not managed by Databricks) beforehand

▪ Prepare source configuration
• File names/locations

• EventHub endpoint

• SQL Server jdbc drivers

• …

21

… and write it to a delta table

▪ Basic scala syntax:

insertDF.writeStream

.format("delta")

.outputMode("append")

.option("checkpointLocation", "/mnt/MountFolder/TableName/_checkpoints/etl-from-json")

.start("/mnt/MountFolder/TableName") //or table(„TableName„)

.trigger(Trigger.Once)

.partitionBy(„PartitionColumn1",„PartitionColumn2")

▪ Output options:
• append – default, appends rows to existing or newly created table

• complete – replace the entire table

• update – only writes rows that have changed since last trigger (only used with aggregations)

▪ Trigger options:
• Trigger.Once – triggers exactly once and then stops the stream (in theory…)

• Trigger.ProcessingTime("60 seconds") – triggers in given interval (can be anything from ms to days)

• Default: behaves as if ProcessingTime set to 0 ms, tries to fire queries as fast as possible

22

Power BI Visualization
on Delta Tables

23

How to connect to Databricks?

1. Get a personal access token

2. Get your cluster’s server hostname, port, and HTTP path

3. Construct the server address to use in in Power BI Desktop
a. Use the schema https://

b. Append the server hostname after the schema

c. Append the HTTP path after the server host name

→ https://westeurope.azuredatabricks.net/sql/protocolv1/o/0123
456789/0123-456789-sometext

4. In Power BI use Spark connector and use
a. „token“ as username

b. personal access token as password

It supports Import AND DirectQuery models!

https://westeurope.azuredatabricks.net/sql/protocolv1/o/0123456789/0123-456789-sometext

How to connect to Databricks?

Streaming DWH Demo

26

What this demo will show (if there‘s enough time)

▪ Streaming from EventHub storage all the way to Synapse

▪ Joins in streams

▪ Watermarking

▪ How to actually write to tables in Synapse and why we ended up needing a classic blob storage

▪ Including user-defined functions

▪ Handling late-arriving data and SCD2

Scenario and source

▪ Demo available by following instructions on blog by Nicholas Hurt:

https://medium.com/microsoftazure/an-introduction-to-streaming-etl-on-azure-databricks-using-
structured-streaming-databricks-16b369d77e34

▪ …though of course we had to simplify and change it up a bit

28

https://medium.com/microsoftazure/an-introduction-to-streaming-etl-on-azure-databricks-using-structured-streaming-databricks-16b369d77e34

Windows

▪ Define windows for aggregations
• Tumbling window
windowedAvgSignalDF = \

eventsDF \

.groupBy(window("eventTime", "5 minutes")) \

.count()

• overlapping window
windowedAvgSignalDF = \

eventsDF \

.groupBy(window("eventTime", “10 minutes", "5 minutes")) \

.count()

29

Source:

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Watermarking

▪ States:

▪ How to prevent inevitable memory overflow?
• .withWatermark(„eventTime“,“10 minutes“)

30

Source:

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Joins in delta streams

▪ Due to data continuously streaming, joins have to be reimagined a bit

▪ For every row of table a, there could always arrive a row in table b that matches

▪ For left joins, you cannot ever tell if there will be no match and result has to be NULL

▪ Solution: use watermarks to determine how long the join operation waits for matches!
• Define watermark delays on inputs
• Define event-time range conditions on join operator

// Define watermarks
val impressionsWithWatermark = impressions

.select($"adId".as("impressionAdId"), $"impressionTime")

.withWatermark("impressionTime", "10 seconds ") // max 10 seconds late

val clicksWithWatermark = clicks
.select($"adId".as("clickAdId"), $"clickTime")
.withWatermark("clickTime", "20 seconds") // max 20 seconds late

// Inner join with time range conditions
display(

impressionsWithWatermark.join(
clicksWithWatermark,
expr("""

clickAdId = impressionAdId AND
clickTime >= impressionTime AND
clickTime <= impressionTime + interval 1 minutes
"""

)
)

)

31

thuss@ceteris.ag

tsalha@ceteris.ag

LinkedIn:

https://www.linkedin.com/in/thorstenhuss/

https://www.linkedin.com/in/tarek-salha-2a39ab189/

Web: www.ceteris.ag

32

Questions?

mailto:thuss@ceteris.ag
mailto:tsalha@ceteris.ag
https://www.linkedin.com/in/thorstenhuss/
https://www.linkedin.com/in/tarek-salha-2a39ab189/
http://www.ceteris.ag/

