
Getting started  
with Apache Spark  
on Azure Databricks



2

Apache Spark

Apache Spark™ is a powerful open-source processing engine built 

around speed, ease of use, and sophisticated analytics. In this tutorial, 

you will get familiar with the Spark UI, learn how to create Spark jobs, 

load data and work with Datasets, get familiar with Spark’s DataFrames 

API, run machine learning algorithms, and understand the basic 

concepts behind Spark Streaming. This Spark environment you will use 

is Azure Databricks. Instead of worrying about spinning up and winding 

down clusters, maintaining clusters, maintaining code history, or Spark 

versions, Azure Databricks will take care of that for you, so you can start 

writing Spark queries instantly and focus on your data problems.

Microsoft Azure Databricks is built by the creators of Apache Spark and 

is the leading Spark-based analytics platform. It provides data science 

and data engineering teams with a fast, easy and collaborative Spark-

based platform on Azure. It gives Azure users a single platform for Big 

Data processing and Machine Learning.

Azure Databricks is a “first party” Microsoft service, the result of a 

unique collaboration between the Microsoft and Databricks teams to 

provide Databricks’ Apache Spark-based analytics service as an integral 

part of the Microsoft Azure platform. It is natively integrated with 

Microsoft Azure in a number of ways ranging from a single click start 

to a unified billing. Azure Databricks leverages Azure’s security and 

seamlessly integrates with Azure services such as Azure Active Directory, 

SQL Data Warehouse, and Power BI.  It also provides fine-grained user 

permissions, enabling secure access to Databricks notebooks, clusters, 

jobs and data.

Azure Databricks brings teams together in an interactive workspace. 

From data gathering to model creation, Databricks notebooks are 

used to unify the process and instantly deploy to production. You can 

launch your new Spark environment with a single click, and integrate 

effortlessly with a wide variety of data stores and services such as Azure 

SQL Data Warehouse, Azure Cosmos DB, Azure Data Lake Store, Azure 

Blob storage, and Azure Event Hub. 



Table of contents

Getting started with Spark......................................................	4

Setting up Azure Databricks....................................................7

A quick start.................................................................................11

Datasets........................................................................................16

DataFrames................................................................................ 25

Machine learning...................................................................... 29

Streaming.................................................................................... 35

Getting started with Apache Spark on Azure Databricks



Getting started  
with Spark

Getting started with Apache Spark on Azure Databricks Section 1



Getting started with Apache Spark on Azure Databricks Section 1

5

Getting started  
with Spark

Spark SQL + DataFrames
Structured Data: Spark SQL 

Many data scientists, analysts, and general business intelligence 

users rely on interactive SQL queries for exploring data. Spark SQL is a 

Spark module for structured data processing. It provides a programming 

abstraction called DataFrames and can also act as distributed SQL query 

engine. It enables unmodified Hadoop Hive queries to run up to 100x 

faster on existing deployments and data. It also provides powerful 

integration with the rest of the Spark ecosystem (e.g., integrating SQL 

query processing with machine learning).

Spark SQL +
DataFrames

Streaming

Spark Core API

Apache Spark™

R SQL Python Scala Java

MLib 
Machine Learning

GraphX
Graph  

Computation

Streaming
Streaming Analytics: Spark Streaming 

Many applications need the ability to process and analyze not only batch 

data, but also streams of new data in real-time. Running on top of Spark, 

Spark Streaming enables powerful interactive and analytical applications 

across both streaming and historical data, while inheriting Spark’s ease 

of use and fault tolerance characteristics. It readily integrates with a  

wide variety of popular data sources, including HDFS, Flume, Kafka,  

and Twitter.



Getting started with Spark Getting started with Apache Spark on Azure Databricks Section 1

6

MLlibMachine Learning
Machine Learning: MLlib 

Machine learning has quickly emerged as a critical piece in mining Big 

Data for actionable insights. Built on top of Spark, MLlib is a scalable 

machine learning library that delivers both high-quality algorithms (e.g., 

multiple iterations to increase accuracy) and blazing speed (up to 100x 

faster than MapReduce). The library is usable in Java, Scala, and  

Python as part of Spark applications, so that you can include it in  

complete workflows.

GraphXGraph Computation
Graph Computation: GraphX 

GraphX is a graph computation engine built on top of Spark that  

enables users to interactively build, transform and reason about  

graph structured data at scale. It comes complete with a library of 

common algorithms. 

      

Spark Core API
General Execution: Spark Core 

Spark Core is the underlying general execution engine for the Spark 

platform that all other functionality is built on top of. It provides 

in-memory computing capabilities to deliver speed, a generalized 

execution model to support a wide variety of applications, and Java, 

Scala, and Python APIs for ease of development.



Setting up 
Azure Databricks

Getting started with Apache Spark on Azure Databricks Section 2



8

Setting up 
Azure Databricks

To get started, set up your Azure Databricks account here.  

 

If you do not already have an Azure account, you can get a trial account 

to get started. Once you have entered the Azure Portal, you can select 

Azure Databricks under the Data + Analytics section.

Getting started with Apache Spark on Azure Databricks Section 2

https://azure.microsoft.com/en-us/free/services/databricks/


Getting started with Apache Spark on Azure Databricks Section 2

9

Setting up Azure Databricks

You can easily set up your workspace within the Azure Databricks service. Once you are in the Azure Databricks Workspace, you can Create a Cluster.



10

And then configure that cluster. Using Databricks Serverless and choosing 

Autoscaling, you will not have to spin up and manage clusters – Databricks 

will take care of that for you.

Once you are up and running you will be able to import Notebooks.

Setting up Azure Databricks Getting started with Apache Spark on Azure Databricks Section 2



A quick start

Getting started with Apache Spark on Azure Databricks Section 3



Getting started with Apache Spark on Azure Databricks Section 3

12

A quick start

Overview
To access all the code examples in this stage, please import the Quick 

Start using Python or Quick Start using Scala notebooks.

This module allows you to quickly start using Apache Spark. We will 

be using Azure Databricks so you can focus on the programming 

examples instead of spinning up and maintaining clusters and notebook 

infrastructure. As this is a quick start, we will be discussing the various 

concepts briefly so you can complete your end-to-end examples. In the 

“Additional Resources” section and other modules of this guide, you will 

have an opportunity to go deeper with the topic of your choice.

Writing your first Apache Spark Job
To write your first Apache Spark Job using Azure Databricks, you will 

write your code in the cells of your Azure Databricks notebook. In this 

example, we will be using Python. For more information, you can also 

reference the Apache Spark Quick Start Guide and the Azure Databricks 

Documentation. The purpose of this quick start is showcase RDD’s 

(Resilient Distributed Datasets) operations so that you will be able to 

understand the Spark UI when debugging or trying to understand the 

tasks being undertaken.

When running this first command, we are reviewing a folder within the 

Databricks File System (an optimized version of Azure Blob Storage) 

which contains your files.

# Take a look at the file system
%fs ls /databricks-datasets/samples/docs/

http://go.databricks.com/hubfs/notebooks/Quick_Start/Quick_Start_Using_Python.html
http://go.databricks.com/hubfs/notebooks/Quick_Start/Quick_Start_Using_Python.html
https://cdn2.hubspot.net/hubfs/438089/notebooks/Quick_Start/Quick_Start_Using_Scala.html
http://spark.apache.org/docs/latest/quick-start.html
https://docs.azuredatabricks.net/
https://docs.azuredatabricks.net/


13

In the next command, you will use the Spark Context to read the README.

md text file.

And then you can count the lines of this text file by running the command.

One thing you may have noticed is that the first command, reading 

the textFile via the Spark Context (sc), did not generate any output 

while the second command (performing the count) did. The reason 

for this is because RDDs have actions (which returns values) as well 

as transformations (which returns pointers to new RDDs). The first 

command was a transformation while the second one was an action. 

This is important because when Spark performs its calculations, it will 

not execute any of the transformations until an action occurs. This allows 

Spark to optimize (e.g. run a filter prior to a join) for performance instead 

of following the commands serially.

A quick start

Apache Spark DAG
To see what is happening when you run the count() command, you can 

see the jobs and stages within the Spark Web UI. You can access this  

directly from the Databricks notebook so you do not need to change 

your context as you are debugging your Spark job.

As you can see from the below Jobs view, when performing the action 

count() it also includes the previous transformation to access the text file.

# Setup the textFile RDD to read the README.md file
# Note this is lazy
textFile = sc.textFile("/databricks-datasets/samples/docs/README.md")

# Perform a count against the README.md file
textFile.count()

Getting started with Apache Spark on Azure Databricks Section 3



14

A quick start

What is happening under the covers becomes more apparent when 

reviewing the Stages view from the Spark UI (also directly accessible 

within your Databricks notebook). As you can see from the DAG 

visualization below, prior to the PythonRDD [1333] count() step, Spark 

will perform the task of accessing the file ([1330] textFile) and running 

MapPartitionsRDD [1331] textFile.

Getting started with Apache Spark on Azure Databricks Section 3



15

A quick start

Saying this, when developing Spark applications, you will typically use 

DataFrames and Datasets. As of Apache Spark 2.0, the DataFrame and 

Dataset APIs are merged together; a DataFrame is the Dataset Untyped 

API while what was known as a Dataset is the Dataset Typed API.

Unified Apache Spark 2.0 API

DataFrame • Dataframe = Dataset[Row
• Alias

• Dataset[T]

Dataset

Dataset
2016

Untyped API

Typed API

RDDs, Datasets, and DataFrames
As noted in the previous section, RDDs have actions which return values 

and transformations which return points to new RDDs. Transformations 

are lazy and executed when an action is run. Some examples include:

Transformations: map(), flatMap(), filter(), mapPartitions(), mapPartitionsWithIndex(), 

sample(), union(), distinct(), groupByKey(), reduceByKey(), sortByKey(), join(), cogroup(), 

pipe(), coalesce(), repartition(), partitionBy(), …

Actions: reduce(), collect(), count(), first(), take(), takeSample(), takeOrdered(), 

saveAsTextFile(), saveAsSequenceFile(), 

saveAsObjectFile(), countByKey(), foreach(), …

In many scenarios, especially with the performance optimizations 

embedded in DataFrames and Datasets, it will not be necessary to work 

with RDDs. But it is important to bring this up because:

•	 RDDs are the underlying infrastructure that allows Spark to run so 

fast (in-memory distribution) and provide data lineage.

•	 If you are diving into more advanced components of Spark, it may 

be necessary to utilize RDDs.

•	 All the DAG visualizations within the Spark UI reference RDDs.

Getting started with Apache Spark on Azure Databricks Section 3



Datasets

Getting started with Apache Spark on Azure Databricks Section 4



17

Datasets

Overview
To access all the code examples in this stage, please import the 

Examining IoT Device Using Datasets notebook.

The Apache Spark Dataset API provides a type-safe, object-oriented 

programming interface. In other words, in Spark 2.0 DataFrame and 

Datasets are unified as explained in the previous section ‘RDDs, Datasets 

and DataFrames,’ and DataFrame is an alias for an untyped Dataset 

[Row]. Like DataFrames, Datasets take advantage of Spark’s Catalyst 

optimizer by exposing expressions and data fields to a query planner. 

Beyond Catalyst’s optimizer, Datasets also leverage Tungsten’s fast in-

memory encoding. They extend these benefits with compile-time type 

safety—meaning production applications can be checked for errors 

before they are ran—and they also allow direct operations over user-

defined classes, as you will see in a couple of simple examples below. 

Lastly, the Dataset API offers a high-level domain specific language 

operations like sum(), avg(), join(), select(), groupBy(), making the code  

a lot easier to express, read, and write.

In this section, you will learn two ways to create Datasets: dynamically 

creating a data and reading from JSON file using Spark Session. 

Additionally, through simple and short examples, you will learn about 

Dataset API operations on the Dataset, issue SQL queries and visualize 

data. For learning purposes, we use a small IoT Device dataset; however, 

there is no reason why you can’t use a large dataset.

Creating or Loading Sample Data
There are two easy ways to have your structured data accessible and 

process it using Dataset APIs within a notebook. First, for primitive types 

in examples or demos, you can create them within a Scala or Python 

notebook or in your sample Spark application. For example, here’s a way 

to create a Dataset of 100 integers in a notebook.

Note that in Spark 2.0, the SparkContext is subsumed by SparkSession, 

a single point of entry, called spark. Going forward, you can use this 

handle in your driver or notebook cell, as shown below, in which we 

create 100 integers as Dataset[Long].

Getting started with Apache Spark on Azure Databricks Section 4

https://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/IoTDeviceGeoIPDS2.0.html


18

DataSets

Second, the more common way is to read a data file from an external 

data sources, such HDFS, S3, NoSQL, RDBMS, or local filesystem. Spark 

supports multiple formats : JSON, CSV, Text, Parquet, ORC etc. To read a 

JSON file, you can simply use the SparkSession handle spark.

At the time of reading the JSON file, Spark does not know the structure 

of your data—how you want to organize your data into a typed-specific 

JVM object. It attempts to infer the schema from the JSON file and 

creates a DataFrame = Dataset[Row] of generic Row objects.

Alternatively, to convert your DataFrame into a Dataset reflecting a Scala 

class object, you define a domain specific Scala case class, followed by 

explicitly converting into that type, as shown below.
// range of 100 numbers to create a Dataset.
val range100 = spark.range(100)
range100.collect()

// read a JSON file from a location mounted on a DBFS mount point
// Note that we are using the new entry point in Spark 2.0 called spark
val jsonData = spark.read.json("/databricks-datasets/data/people/person.json")

// First, define a case class that represents our type-specific Scala JVM 
Object
case class Person (email: String, iq: Long, name: String)
 
// Read the JSON file, convert the DataFrames into a type-specific JVM Scala 
object // Person. Note that at this stage Spark, upon reading JSON, created 
a generic
// DataFrame = Dataset[Rows]. By explicitly converting DataFrame into 
Dataset
// results in a type-specific rows or collection of objects of type Person
val ds = spark.read.json("/databricks-datasets/data/people/person.json").
as[Person]

Getting started with Apache Spark on Azure Databricks Section 4



19

DataSets

In a second example, we do something similar with IoT devices 

state information captured in a JSON file: define a case class and 

read the JSON file from the FileStore, and convert the DataFrame = 

Dataset[DeviceIoTData]. 

There are a couple of reasons why you want to convert a DataFrame 

into a type-specific JVM objects. First, after an explicit conversion, for all 

relational and query expressions using Dataset API, you get compile-type 

safety. For example, if you use a filter operation using the wrong data 

type, Spark will detect mismatch types and issue a compile error rather 

an execution runtime error, resulting in catching errors earlier. Second, 

the Dataset API provides highorder methods making code much easier 

to read and develop.

In the following section, Processing and Visualizing a Dataset, you will 

notice how the use of Dataset typed objects make the code much easier 

to express and read. 

As above with Person example, here we create a case class that 

encapsulates our Scala object.

// define a case class that represents our Device data.
case class DeviceIoTData (
battery_level: Long,
c02_level: Long,
cca2: String,
cca3: String,
cn: String,
device_id: Long,
device_name: String,
humidity: Long,
ip: String,
latitude: Double,
longitude: Double,
scale: String,
temp: Long,
timestamp: Long
)
// fetch the JSON device information uploaded into the Filestore
val jsonFile = “/databricks-datasets/data/iot/iot_devices.json”

// read the json file and create the dataset from the case class DeviceIoTData
// ds is now a collection of JVM Scala objects DeviceIoTData
val ds = spark.read.json(jsonFile).as[DeviceIoTData]

Getting started with Apache Spark on Azure Databricks Section 4



20

DataSets

Viewing a Dataset
To view this data in a tabular format, instead of exporting this data out 

to a third party tool, you can use the Databricks display() command. That 

is, once you have loaded the JSON data and converted into a Dataset 

for your type-specific collection of JVM objects, you can view them as 

you would view a DataFrame, by using either display() or using standard 

Spark commands, such as take(), foreach(), and println() API calls.

// display the dataset table just read in from the JSON file  
display(ds)

Getting started with Apache Spark on Azure Databricks Section 4



21

DataSets

Processing and Visualizing a Dataset
An additional benefit of using the Azure Databricks display() command 

is that you can quickly view this data with a number of embedded 

visualizations. For example, in a new cell, you can issue SQL queries and 

click on the map to see the data. But first, you must save your dataset, ds, 

as a temporary table.

// Using the standard Spark commands, take() and foreach(), print the first 
// 10 rows of the Datasets.
ds.take(10).foreach(println(_))

// registering your Dataset as a temporary table to which you can issue SQL 
queries
ds.createOrReplaceTempView("iot_device_data")

Getting started with Apache Spark on Azure Databricks Section 4



22

DataSets

Like RDD, Dataset has transformations and actions methods. Most 

importantly are the high-level domain specific operations such as sum(), 

select(), avg(), join(), and union() that are absent in RDDs. For more 

information, look at the Scala Dataset API.

Let’s look at a few handy ones in action. In the example below, we 

use filter(), map(), groupBy(), and avg(), all higher-level methods, to 

create another Dataset, with only fields that we wish to view. What’s 

noteworthy is that we access the attributes we want to filter by their 

names as defined in the case class. That is, we use the dot notation to 

access individual fields. As such, it makes code easy to read and write.

// filter out all devices whose temperature exceed 25 degrees and generate 
// another Dataset with three fields that of interest and then display 
// the mapped Dataset
val dsTemp = ds.filter(d => d.temp > 25).map(d => (d.temp, d.device_name, 
d.cca3)
display(dsTemp)

Getting started with Apache Spark on Azure Databricks Section 4

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset


23

DataSets

// Apply higher-level Dataset API methods such as groupBy() and avg().
// Filter temperatures > 25, along with their corresponding
// devices' humidity, compute averages, groupBy cca3 country codes,
// and display the results, using table and bar charts
val dsAvgTmp = ds.filter(d => {d.temp > 25}).map(d => (d.temp, d.humidity, 
d.cca3)).groupBy($"_3").avg()
 
// display averages as a table, grouped by the country
display(dsAvgTmp)

// Select individual fields using the Dataset method select()
// where battery_level is greater than 6. Note this high-level
// domain specific language API reads like a SQL query
display(ds.select($"battery_level", $"c02_level", $"device_name").
where($"battery_level" > 6).sort($"c02_level"))

// display the averages as bar graphs, grouped by the country
display(dsAvgTmp)

Getting started with Apache Spark on Azure Databricks Section 4



24

DataSets

Below is an example showing how quickly you can go from table to map 

to charts using Datasets and Azure Databricks  display() command.

Having saved the Dataset of DeviceIoTData as a temporary table, you 

can issue SQL queries to it.

%sql select cca3, count (distinct device_id) as device_id from  
iot_device_data group
by cca3 order by device_id desc limit 100

Getting started with Apache Spark on Azure Databricks Section 4



DataFrames

Getting started with Apache Spark on Azure Databricks Section 5



26

DataFrames

Overview
To access all the code examples in this stage, please import the 

Population vs. Price DataFrames notebook.

Apache Spark DataFrames were created to run Spark programs faster 

from both a developer and an execution perspective. With less code 

to write and less data to read, the Catalyst optimizer solves common 

problems efficiently and faster using DataFrame functions (e.g. select 

columns, filtering, joining different data sources, aggregation, etc.). 

DataFrames also allow you to seamlessly intermix operations with 

custom SQL, Python, Java, R, or Scala code.

Accessing the sample data
The easiest way to work with DataFrames is to access an example 

dataset. We have made a number of datasets available in the /

databricks-datasets folder which is accessible within the Databricks 

platform. For example, to access the file that compares city population 

vs. median sale prices of homes, you can access the file /databricks-

datasets/samples/population-vs-price/data_geo.csv.

We will use the spark-csv package from Spark Packages (a community 

index of packages for Apache Spark) to quickly import the data, specify 

that a header exists, and infer the schema.

Note, the spark-csv package is embedded into Spark 2.0.

# Use the Spark CSV datasource with options specifying:
# - First line of file is a header
# - Automatically infer the schema of the data
data = sqlContext.read.format("csv")
  .option("header", "true")
  .option("inferSchema", "true")
  .load("/databricks-datasets/samples/population-vs-price/data_geo.csv")

data.cache() # Cache data for faster reuse
data = data.dropna() # drop rows with missing values

Getting started with Apache Spark on Azure Databricks Section 5

http://go.databricks.com/hubfs/notebooks/Pop._vs._Price_Multi-Chart.html
http://spark-packages.org/package/databricks/spark-csv
http://spark-packages.org/


27

Dataframes

Viewing the DataFrame
Now that you have created the data DataFrame, you can quickly access 

the data using standard Spark commands such as take(). For example, 

you can use the command data.take(10) to view the first ten rows of the  

data DataFrame.

To view this data in a tabular format, instead of exporting this data out 

to a third party tool, you can use the display() command within  

Azure Databricks.

# Register table so it is accessible via SQL Context
# For Apache Spark = 2.0
data.createOrReplaceTempView("data_geo")

Getting started with Apache Spark on Azure Databricks Section 5



28

Dataframes

Visualizing your DataFrame
An additional benefit of using the Azure Databricks display() command 

is that you can quickly view this data with a number of embedded 

visualizations. For example, in a new cell, you can specify the following 

SQL query and click on the map.

Below is an example showing how quickly you can go from table to map 

using DataFrames and the Azure Databricks display() command.

%sql select 'State Code', '2015 median sales price' from data

Getting started with Apache Spark on Azure Databricks Section 5



Machine learning

Getting started with Apache Spark on Azure Databricks Section 6



Getting started with Apache Spark on Azure Databricks Section 6

30

Machine learning

Overview
To access all the code examples in this stage, please import the 

Population vs. Price Linear Regression notebook. As organizations  

create more diverse and more user-focused data products and  

services, there is a growing need for machine learning, which can be 

used to develop personalizations, recommendations, and predictive 

insights. Apache Spark’s Machine Learning Library (MLlib) allows data 

scientists to focus on their data problems and models instead of solving 

the complexities surrounding distributed data (such as infrastructure, 

configurations, and so on).

Accessing the sample data
The easiest way to work with DataFrames is to access an example 

dataset. We have made a number of datasets available in the /

databricks-datasets folder which is accessible from Azure Databricks. For 

example, to access the file that compares city population vs. median sale 

prices of homes, you can access the file /databricks-datasets/samples/

population-vs-price/data_geo.csv.

We will use the spark-csv package from Spark Packages (a community 

index of packages for Apache Spark) to quickly import the data, specify 

that a header exists, and infer the schema.

Note, the spark-csv package is embedded into Spark 2.0.

# Use the Spark CSV datasource with options specifying:
# - First line of file is a header
# - Automatically infer the schema of the data
data = sqlContext.read.format("csv")
  .option("header", "true")
  .option("inferSchema", "true")
  .load("/databricks-datasets/samples/population-vs-price/data_geo.csv")
 
data.cache() # Cache data for faster reuse
data = data.dropna() # drop rows with missing values
 
# Register table so it is accessible via SQL Context
# For Apache Spark = 2.0
data.createOrReplaceTempView("data_geo")

https://go.databricks.com/hubfs/notebooks/Pop._vs._Price_LR.html
https://spark-packages.org/package/databricks/spark-csv
https://spark-packages.org/


31

Machine learning

To view this data in a tabular format, instead of exporting this data out to 

a third party tool, you can use the display() command within Databricks.
Prepare and visualize data for ML algorithms
In supervised learning—such as a regression algorithm—you typically 

will define a label and a set of features. In our linear regression 

example, the label is the 2015 median sales price while the feature is 

the 2014 Population Estimate. That is, we are trying to use the feature 

(population) to predict the label (sales price). To simplify the creation of 

features within Python Spark MLlib, we use LabeledPointto convert the 

feature (population) to a Vector type.

# convenience for specifying schema
from pyspark.mllib.regression import LabeledPoint
 
data = data.select("2014 Population estimate", "2015 median sales price")
  .map(lambda r: LabeledPoint(r[1], [r[0]]))
  .toDF()
display(data)

Getting started with Apache Spark on Azure Databricks Section 6

https://azure.microsoft.com/en-us/free/services/databricks/


32

Machine learning

Executing Linear Regression Model
In this section, we will execute two different linear regression models 

using different regularization parameters and determine its efficacy. 

That is, how well do either of these two models predict the sales price 

(label) based on the population (feature).

Building the model 

Using the model, we can also make predictions by using the transform() 

function which adds a new column of predictions. For example, the 

code below takes the first model (modelA) and shows you both the label 

(original sales price) and prediction (predicted sales price) based on the 

features (population).

# Import LinearRegression class
from pyspark.ml.regression import LinearRegression
 
# Define LinearRegression algorithm
lr = LinearRegression()
 
# Fit 2 models, using different regularization parameters
modelA = lr.fit(data, {lr.regParam:0.0})
modelB = lr.fit(data, {lr.regParam:100.0}

Getting started with Apache Spark on Azure Databricks Section 6



33

Machine learning

Evaluating the Model
To evaluate the regression analysis, we will calculate the root mean 

square error using the RegressionEvaluator. Below is the pySpark code 

for evaluating the two models and their output.

# Make predictions
predictionsA = modelA.transform(data)
display(predictionsA)

from pyspark.ml.evaluation import RegressionEvaluator
evaluator = RegressionEvaluator(metricName="rmse")
RMSE = evaluator.evaluate(predictionsA)
print("ModelA: Root Mean Squared Error = " + str(RMSE))
 
# ModelA: Root Mean Squared Error = 128.602026843
predictionsB = modelB.transform(data)
RMSE = evaluator.evaluate(predictionsB)
print("ModelB: Root Mean Squared Error = " + str(RMSE))
 
# ModelB: Root Mean Squared Error = 129.496300193

Getting started with Apache Spark on Azure Databricks Section 6



34

Machine learning

As is typical for many machine learning algorithms, you will want to 

visualize the scatterplot. Azure Databricks supports Python pandas and 

ggplot, the code below creates a linear regression plot using Python 

Pandas DataFrame (pydf) and ggplot to display the scatterplot and the 

two regression models.

Visualizing the Model

# Import numpy, pandas, and ggplot
import numpy as np
from pandas import *
from ggplot import *
 
# Create Python DataFrame
pop = data.map(lambda p: (p.features[0])).collect()
price = data.map(lambda p: (p.label)).collect()
predA = predictionsA.select("prediction").map(lambda r: r[0]).collect()
predB = predictionsB.select("prediction").map(lambda r: r[0]).collect()
 
pydf = DataFrame({'pop':pop,'price':price,'predA':predA, 'predB':predB})

# Create scatter plot and two regression models (scaling exponential) using 
ggplot
p = ggplot(pydf, aes('pop','price')) +
geom_point(color='blue') +
geom_line(pydf, aes('pop','predA'), color='red') +
geom_line(pydf, aes('pop','predB'), color='green') +
scale_x_log10() + scale_y_log10()
display(p)

Getting started with Apache Spark on Azure Databricks Section 6



Streaming

Getting started with Apache Spark on Azure Databricks Section 7



36

Streaming

Overview
To access all the code examples in this stage, please import the 

Streaming Wordcount notebook. To help introduce Apache Spark 

Streaming, we will be going through the Streaming Wordcount example 

– the “Hello World” example of Spark Streaming which counts words 

on 1-second batches of streaming data. It uses an in-memory string 

generator as a dummy source for streaming data. Please refer to the 

Streaming Wordcount notebook to execute this streaming job as this 

guide will focus on the primary coding components.

Apache Spark Streaming Concepts
Apache Spark Streaming is a scalable fault-tolerant streaming processing 

system. As part of Apache Spark™, it integrates with MLlib, SQL, 

DataFrames, and GraphX. As for Spark 2.0, we will also release Structured 

Streaming so you can work with Streaming DataFrames.

Spark Streaming

train models 
with live data

use trained
model 

data storage
 systems

process with 
DataFrames

interactively
query with SQL 

MLlib
machine learning

Spark SQL
SQL + DataFrames

streaming data
sources

static data
sources

Getting started with Apache Spark on Azure Databricks Section 7



37

Streaming

Sensors, IoT devices, social networks, and online transactions are all 

generating data that needs to be monitored constantly and acted upon 

quickly. As a result, the need for large-scale, real-time stream processing 

is more evident than ever before. There are there are four broad ways 

Spark Streaming is being used today:

•	 Streaming ETL — Data is continuously cleaned and aggregated 

before being pushed into data stores.

•	 Triggers — Anomalous behavior is detected in real-time and 

further downstream actions are triggered accordingly. E.g. unusual 

behavior of sensor devices generating actions.

•	 Data enrichment — Live data is enriched with more information by 

joining it with a static dataset allowing for a more complete  

real-time analysis.

•	 Complex sessions and continuous learning — Events related to 

a live session (e.g. user activity after logging into a website or 

application) are grouped together and analyzed. In some cases,  

the session information is used to continuously update machine  

learning models.

In general, Spark Streaming works by having a set of receivers that 

receive data streams and chop them up into little batches. Spark then 

processes these batches and pushes out the results.

StreamingContext
Define the function that sets up the StreamingContext

As noted in the previous section, Spark Streaming requires two 

components: a receiver and a function that creates and sets up the 

streaming computation. For this Streaming Word Count example in this 

guide, we will focus on the function as this is the primary logic. Please 

reference the Streaming Word Count notebook to review the custom 

receiver as the dummy source.

Data streams ResultsBatches

Spark Streaming

Re
ce

iv
er

s

Spark

Getting started with Apache Spark on Azure Databricks Section 7



38

Streaming

// This is the dummy source implemented as a custom receiver. No need to understand 
this.
import scala.util.Random
import org.apache.spark.streaming.receiver._
 
class DummySource(ratePerSec: Int) extends Receiver[String](StorageLevel.MEMORY_AND_
DISK_2) {
...
}
 
//
// This is the function that creates and sets up the streaming computation
//
var newContextCreated = false      // Flag to detect whether new context was created 
or not
 
// Function to create a new StreamingContext and set it up
def creatingFunc(): StreamingContext = {
    
  // Create a StreamingContext
  val ssc = new StreamingContext(sc, Seconds(batchIntervalSeconds))
  
  // Create a stream that generates 1000 lines per second
  val stream = ssc.receiverStream(new DummySource(eventsPerSecond))  
  
  // Split the lines into words, and then do word count
  val wordStream = stream.flatMap { _.split(" ")  }
  val wordCountStream = wordStream.map(word => (word, 1)).reduceByKey(_ + _)
 
  // Create temp table at every batch interval
  //  For Apache Spark = 2.0
  //     rdd.toDF("word", "count").createOrReplaceTempView("batch_word_count") 
  wordCountStream.foreachRDD { rdd => 
    rdd.toDF("word", "count").createOrReplaceTempView("batch_word_count")    
  }
  
  stream.foreachRDD { rdd =>
    System.out.println("# events = " + rdd.count())
    System.out.println("t " + rdd.take(10).mkString(", ") + ", ...")
  }
 
  ssc.remember(Minutes(1))  // To make sure data is not deleted by the time we 
query it interactively
  
  println(“Creating function called to create new StreamingContext”)
  newContextCreated = true  
  ssc
}

Getting started with Apache Spark on Azure Databricks Section 7



39

Streaming

Start Streaming Job: Stop existing 
StreamingContext if any and start/restart  
the new one
Here we are going to use the configurations at the top of the notebook 

to decide whether to stop any existing StreamingContext, and start a 

new one, or recover one from existing checkpoints.

// Stop any existing StreamingContext 
if (stopActiveContext) {	
  StreamingContext.getActive.foreach { _.stop(stopSparkContext = false) }
} 
 
// Get or create a streaming context
val ssc = StreamingContext.getActiveOrCreate(creatingFunc)
if (newContextCreated) {
  println("New context created from currently defined creating function") 
} else {
  println("Existing context running or recovered from checkpoint, may not be 
running currently defined creating function")
}
 
// Start the streaming context in the background.
ssc.start()
 
// This is to ensure that we wait for some time before the background 
streaming job starts. This will put this cell on hold for 5 times the 
batchIntervalSeconds.
ssc.awaitTerminationOrTimeout(batchIntervalSeconds * 5 * 1000)

Interactive Querying
As you can see from the example below, the below query will change 

every time you execute it to reflect the current word count based on the 

input stream of data.

Once you are done, just execute the statement below to stop the 

streaming context.

StreamingContext.getActive.foreach { _.stop(stopSparkContext = false) }

Getting started with Apache Spark on Azure Databricks Section 7



40

In closing

We hope you found this tutorial helpful in 
getting started on Spark. If you have further 
questions, be sure to visit azure.com/databricks.

Copyright © 2018 Microsoft, Inc. All rights reserved. This content is for informational purposes only. Microsoft makes no warranties, express or implied, with respect to the information presented here.

https://azure.microsoft.com/en-us/services/databricks/

