Getting started
with Apache Spark
on Azure Databricks

Apache Spark

Apache Spark™ is a powerful open-source processing engine built
around speed, ease of use, and sophisticated analytics. In this tutorial,
you will get familiar with the Spark Ul, learn how to create Spark jobs,
load data and work with Datasets, get familiar with Spark’s DataFrames
API, run machine learning algorithms, and understand the basic
concepts behind Spark Streaming. This Spark environment you will use
is Azure Databricks. Instead of worrying about spinning up and winding
down clusters, maintaining clusters, maintaining code history, or Spark
versions, Azure Databricks will take care of that for you, so you can start

writing Spark queries instantly and focus on your data problems.

Microsoft Azure Databricks is built by the creators of Apache Spark and
is the leading Spark-based analytics platform. It provides data science
and data engineering teams with a fast, easy and collaborative Spark-
based platform on Azure. It gives Azure users a single platform for Big

Data processing and Machine Learning.

Azure Databricks is a “first party” Microsoft service, the result of a
unique collaboration between the Microsoft and Databricks teams to
provide Databricks’ Apache Spark-based analytics service as an integral
part of the Microsoft Azure platform. It is natively integrated with
Microsoft Azure in a number of ways ranging from a single click start

to a unified billing. Azure Databricks leverages Azure's security and
seamlessly integrates with Azure services such as Azure Active Directory,
SQL Data Warehouse, and Power BI. It also provides fine-grained user
permissions, enabling secure access to Databricks notebooks, clusters,

jobs and data.

Azure Databricks brings teams together in an interactive workspace.
From data gathering to model creation, Databricks notebooks are

used to unify the process and instantly deploy to production. You can
launch your new Spark environment with a single click, and integrate
effortlessly with a wide variety of data stores and services such as Azure
SQL Data Warehouse, Azure Cosmos DB, Azure Data Lake Store, Azure

Blob storage, and Azure Event Hub.

Table of c

Getting started with Spark ...

Setting up Azure Databricks

A quickstart........cccooooieiennnn.

Datasets.......oooovoeeeeeeeeeeeee

ontents

Getting started with Apache Spark on Azure Databricks

DataFrames ...
Machine [€arning.........cccoooeeviivieieieeeee e

SErEAMING ... s

Getting started
with Spark

Getting started with Apache Spark on Azure Databricks

Getting started
with Spark

Apache Spark™

GraphX

Spark SQL + MLib Graph

Streamin . .
DataFrames - Machine Learning Computation

Spark Core API

Spark SQL + DataFrames
Structured Data: Spark SQL

Many data scientists, analysts, and general business intelligence

users rely on interactive SQL queries for exploring data. Spark SQL is a
Spark module for structured data processing. It provides a programming
abstraction called DataFrames and can also act as distributed SQL query
engine. It enables unmodified Hadoop Hive queries to run up to 100x
faster on existing deployments and data. It also provides powerful
integration with the rest of the Spark ecosystem (e.g., integrating SQL

query processing with machine learning).

Getting started with Apache Spark on Azure Databricks

Streaming
Streaming Analytics: Spark Streaming

Many applications need the ability to process and analyze not only batch
data, but also streams of new data in real-time. Running on top of Spark,
Spark Streaming enables powerful interactive and analytical applications
across both streaming and historical data, while inheriting Spark's ease
of use and fault tolerance characteristics. It readily integrates with a

wide variety of popular data sources, including HDFS, Flume, Kafka,

and Twitter.

Section 1

Getting started with Spark Getting started with Apache Spark on Azure Databricks Section 1

MLIlibMachine Learning

Machine Learning: MLIib

Machine learning has quickly emerged as a critical piece in mining Big
Data for actionable insights. Built on top of Spark, MLIib is a scalable
machine learning library that delivers both high-quality algorithms (e.g.,
multiple iterations to increase accuracy) and blazing speed (up to 100x
faster than MapReduce). The library is usable in Java, Scala, and

Python as part of Spark applications, so that you can include it in

complete workflows.

GraphXGraph Computation
Graph Computation: GraphX

GraphXis a graph computation engine built on top of Spark that
enables users to interactively build, transform and reason about
graph structured data at scale. It comes complete with a library of

common algorithms.

Spark Core API

General Execution: Spark Core

Spark Core is the underlying general execution engine for the Spark
platform that all other functionality is built on top of. It provides
in-memory computing capabilities to deliver speed, a generalized
execution model to support a wide variety of applications, and Java,

Scala, and Python APIs for ease of development.

Setting up
Azure Databricks

Getting started with Apache Spark on Azure Databricks

Setting up
Azure Databricks

To get started, set up your Azure Databricks account here.

If you do not already have an Azure account, you can get a trial account
to get started. Once you have entered the Azure Portal, you can select

Azure Databricks under the Data + Analytics section.

{ Create a resource

Al services

Acure Marketplace

Dashboard
Get started
I resource:
- o’ Recently created
Compute
Networking
Storage
¥ 50L databases
B B sehhmens Web + Mobile
u SOL data warchouses. Containers
Databases
& Arure Cosmos DB
Data + Analytics
B Virtual machines
Al + Cognitive Services
HDInsight clusters Internet of Things

Integrats
@ Load balancers Integration

B Storage accounts
Virtual networks Monitoring + Management

@ Anwe Active Directory Md-ons

Blockchain
@ Monior
@ Advisor

@ Secunty Center

Getting started with Apache Spark on Azure Databricks

Section 2

https://azure.microsoft.com/en-us/free/services/databricks/

Setting up Azure Databricks Getting started with Apache Spark on Azure Databricks Section 2

You can easily set up your workspace within the Azure Databricks service. Once you are in the Azure Databricks Workspace, you can Create a Cluster.

Create a resource Azure Datab

All services

nfwebinarDemo

Dashboard Arure conversion - Dxtemnal

o

Create new Usee emrstanmg

All resources

Resource groups Wi byer

App Services

West g

SOL databases
SN data warchouses
& Azure Cosmos DB West Europe
wWest US

Virtual machnes
HiMnsight clusters
Load balancers
Sloiage accounts
Virtual networks
Azure Actve Directory
Maonstor

* Advisor

Secunly Center

Setting up Azure Databricks Getting started with Apache Spark on Azure Databricks Section 2

And then configure that cluster. Using Databricks Serverless and choosing Once you are up and running you will be able to import Notebooks.
Autoscaling, you will not have to spin up and manage clusters — Databricks

will take care of that for you.

]
]
= =]
o -
= =
-
[=)

10

Getting started with Apache Spark on Azure Databricks Section 3

A quick start

A quick start

Overview
To access all the code examples in this stage, please import the Quick

Start using Python or Quick Start using Scala notebooks.

This module allows you to quickly start using Apache Spark. We will

be using Azure Databricks so you can focus on the programming
examples instead of spinning up and maintaining clusters and notebook
infrastructure. As this is a quick start, we will be discussing the various
concepts briefly so you can complete your end-to-end examples. In the
“Additional Resources” section and other modules of this guide, you will

have an opportunity to go deeper with the topic of your choice.

Getting started with Apache Spark on Azure Databricks Section 3

Writing your first Apache Spark Job

To write your first Apache Spark Job using Azure Databricks, you will
write your code in the cells of your Azure Databricks notebook. In this
example, we will be using Python. For more information, you can also
reference the Apache Spark Quick Start Guide and the Azure Databricks
Documentation. The purpose of this quick start is showcase RDD's
(Resilient Distributed Datasets) operations so that you will be able to
understand the Spark Ul when debugging or trying to understand the

tasks being undertaken.
When running this first command, we are reviewing a folder within the

Databricks File System (an optimized version of Azure Blob Storage)

which contains your files.

Take a look at the file system
%fs 1s /databricks-datasets/samples/docs/

path
dbfs:/databricks-datasets/samples/docs/README.md

12

http://go.databricks.com/hubfs/notebooks/Quick_Start/Quick_Start_Using_Python.html
http://go.databricks.com/hubfs/notebooks/Quick_Start/Quick_Start_Using_Python.html
https://cdn2.hubspot.net/hubfs/438089/notebooks/Quick_Start/Quick_Start_Using_Scala.html
http://spark.apache.org/docs/latest/quick-start.html
https://docs.azuredatabricks.net/
https://docs.azuredatabricks.net/

A quick start

In the next command, you will use the Spark Context to read the README.

md text file.

Setup the textFile RDD to read the README.md file
Note this is lazy
textFile = sc.textFile("/databricks-datasets/samples/docs/README.md")

And then you can count the lines of this text file by running the command.

Perform a count against the README.md file
textFile.count()

When performing an action (like a count) this is when the textFile is read
Click on [View] to see the stages and executors
textFile.count()

Out[34]: 82

One thing you may have noticed is that the first command, reading

the textFile via the Spark Context (sc), did not generate any output

while the second command (performing the count) did. The reason

for this is because RDDs have actions (which returns values) as well

as transformations (which returns pointers to new RDDs). The first
command was a transformation while the second one was an action.
This is important because when Spark performs its calculations, it will
not execute any of the transformations until an action occurs. This allows
Spark to optimize (e.g. run a filter prior to a join) for performance instead

of following the commands serially.

Getting started with Apache Spark on Azure Databricks

Apache Spark DAG

To see what is happening when you run the count() command, you can
see the jobs and stages within the Spark Web Ul. You can access this
directly from the Databricks notebook so you do not need to change

your context as you are debugging your Spark job.

As you can see from the below Jobs view, when performing the action

count() it also includes the previous transformation to access the text file.

Section 3

13

A quick start

Jobs Stages Storage Environment Executors saL

Details for Job 227

Status: SUCCEEDED

Job Group: 6315769790877914010_8378925948751892694_289¢1bd99b994ab3a5bB8d5628182afe?
Completed Stages: 1

JDBG/ODBC Server

» Event Timeline
wDAG Visualization

Stage 502

textFile

Completed Stages (1)

Stage Tasks:
Id Pool Name Description Duration St fTotal
502 6315769790877914010 # When performing an action (like a count) this... 2015/12/14 1s —

count at <ipython-input-34-270fe185824b>:3 00:16:41
+details

What is happening under the covers becomes more apparent when
reviewing the Stages view from the Spark Ul (also directly accessible
within your Databricks notebook). As you can see from the DAG
visualization below, prior to the PythonRDD [1333] count() step, Spark
will perform the task of accessing the file ([1330] textFile) and running
MapPartitionsRDD [1331] textFile.

Getting started with Apache Spark on Azure Databricks

Jobs Stages Storage Environment Executors saL JDBC/ODBC Server

Details for Stage 502 (Attempt 0)

Total Time Across All Tasks: 2 s
Locality Level Summary: Process local: 2
Input Size / Records: 3.8 KB / 82

+DAG Visualization

Stage 502
textFile

/mnt/tardisé/docs/README.md [1330] textFile at NE[IVEMEINHGADDESOIIWDL]a\ta%Z:

MapPartitionsRDD [1331] textFile at NativeMethodAccessarimpl.java: -2 |

!

PythonRDD [1333] count at <ipython-input-34-270fe185624b>:3 |

¥ Show Additional Metrics
» Event Timeline

Summary Metrics for 2 Completed Tasks

Metric Min 25th percentile Median

Duration 06s 06s 1s 1s
GC Time 0ms 0ms 0ms 0ms
Input Size / Records 1967.0B /38 1967.0B /38 1967.0B /44

75th percentile

1967.0B/44

1967.0B /44

Section 3

14

A quick start

RDDs, Datasets, and DataFrames
As noted in the previous section, RDDs have actions which return values
and transformations which return points to new RDDs. Transformations

are lazy and executed when an action is run. Some examples include:

Transformations: map(), flatMap(), filter(), mapPartitions(), mapPartitionsWithIndex(),
sample(), union(), distinct(), groupByKey(), reduceByKey(), sortByKey(), join(), cogroup),
pipe(), coalesce(), repartition(), partitionBy(), ...

Actions: reduce(), collect(), count(), first(), take(), takeSample(), takeOrdered)),
saveAsTextFile(), saveAsSequenceFile(),

saveAsObjectFile(), countByKey(), foreach(), ...

In many scenarios, especially with the performance optimizations
embedded in DataFrames and Datasets, it will not be necessary to work

with RDDs. But it is important to bring this up because:

+ RDDs are the underlying infrastructure that allows Spark to run so
fast (in-memory distribution) and provide data lineage.
+ Ifyou are diving into more advanced components of Spark, it may

be necessary to utilize RDDs.

+ All the DAG visualizations within the Spark Ul reference RDDs.

Getting started with Apache Spark on Azure Databricks Section 3

Saying this, when developing Spark applications, you will typically use
DataFrames and Datasets. As of Apache Spark 2.0, the DataFrame and
Dataset APIs are merged together; a DataFrame is the Dataset Untyped

APl while what was known as a Dataset is the Dataset Typed API.

Unified Apache Spark 2.0 API

Untyped API

« Dataframe = Dataset[Row
Dataset « Alias

2016

I DataFrame

Dataset

Typed API

« Dataset[T]

15

Getting started with Apache Spark on Azure Databricks Section 4

Datasets

Datasets

Overview
To access all the code examples in this stage, please import the

Examining loT Device Using Datasets notebook.

The Apache Spark Dataset API provides a type-safe, object-oriented
programming interface. In other words, in Spark 2.0 DataFrame and
Datasets are unified as explained in the previous section ‘RDDs, Datasets
and DataFrames,’ and DataFrame is an alias for an untyped Dataset
[Row]. Like DataFrames, Datasets take advantage of Spark’s Catalyst
optimizer by exposing expressions and data fields to a query planner.
Beyond Catalyst's optimizer, Datasets also leverage Tungsten's fast in-
memory encoding. They extend these benefits with compile-time type
safety—meaning production applications can be checked for errors
before they are ran—and they also allow direct operations over user-
defined classes, as you will see in a couple of simple examples below.
Lastly, the Dataset API offers a high-level domain specific language
operations like sum(), avg(), join(), select(), groupBy(), making the code

a lot easier to express, read, and write.

Getting started with Apache Spark on Azure Databricks Section 4

In this section, you will learn two ways to create Datasets: dynamically
creating a data and reading from JSON file using Spark Session.
Additionally, through simple and short examples, you will learn about
Dataset APl operations on the Dataset, issue SQL queries and visualize
data. For learning purposes, we use a small IoT Device dataset; however,

there is no reason why you can't use a large dataset.

Creating or Loading Sample Data

There are two easy ways to have your structured data accessible and
process it using Dataset APIs within a notebook. First, for primitive types
in examples or demos, you can create them within a Scala or Python
notebook or in your sample Spark application. For example, here's a way

to create a Dataset of 100 integers in a notebook.

Note that in Spark 2.0, the SparkContext is subsumed by SparkSession,
a single point of entry, called spark. Going forward, you can use this
handle in your driver or notebook cell, as shown below, in which we

create 100 integers as Dataset[Long].

17

https://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/IoTDeviceGeoIPDS2.0.html

DataSets

// range of 100 numbers to create a Dataset.
val rangel@0 = spark.range(100)
rangel00.collect()

» (1) Spark Jobs

rangel®®: org.apache.spark.sql.Dataset[Long] = [id: bigint]
res@: Array[Long] = Array(®, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, ©
6, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

? ?

Second, the more common way is to read a data file from an external
data sources, such HDFS, S3, NoSQL, RDBMS, or local filesystem. Spark
supports multiple formats : JSON, CSV, Text, Parquet, ORC etc. To read a
JSON file, you can simply use the SparkSession handle spark.

// read a JSON file from a location mounted on a DBFS mount point
// Note that we are using the new entry point in Spark 2.0 called spark
val jsonData = spark.read.json("/databricks-datasets/data/people/person.json™)

At the time of reading the JSON file, Spark does not know the structure
of your data—how you want to organize your data into a typed-specific
JVM object. It attempts to infer the schema from the JSON file and

creates a DataFrame = Dataset[Row] of generic Row objects.

Getting started with Apache Spark on Azure Databricks

Alternatively, to convert your DataFrame into a Dataset reflecting a Scala
class object, you define a domain specific Scala case class, followed by

explicitly converting into that type, as shown below.

// First, define a case class that represents our type-specific Scala JVM
Object
case class Person (email: String, iq: Long, name: String)

// Read the JSON file, convert the DataFrames into a type-specific JVM Scala
object // Person. Note that at this stage Spark, upon reading JSON, created
a generic
// DataFrame = Dataset[Rows]. By explicitly converting DataFrame into
Dataset
// results in a type-specific rows or collection of objects of type Person
val ds = spark.read.json("/databricks-datasets/data/people/person.json™).
as[Person]

Section 4

18

DataSets

In a second example, we do something similar with loT devices
state information captured in a JSON file: define a case class and
read the JSON file from the FileStore, and convert the DataFrame =

Dataset[DeviceloTData].

There are a couple of reasons why you want to convert a DataFrame

into a type-specific JVM objects. First, after an explicit conversion, for all
relational and query expressions using Dataset API, you get compile-type
safety. For example, if you use a filter operation using the wrong data
type, Spark will detect mismatch types and issue a compile error rather
an execution runtime error, resulting in catching errors earlier. Second,
the Dataset API provides highorder methods making code much easier

to read and develop.

In the following section, Processing and Visualizing a Dataset, you will
notice how the use of Dataset typed objects make the code much easier

to express and read.

As above with Person example, here we create a case class that

encapsulates our Scala object.

Getting started with Apache Spark on Azure Databricks

// define a case class that represents our Device data.
case class DeviceIoTData (
battery_level: Long,
c@2_level: Long,

cca2: String,

cca3: String,

cn: String,

device_id: Long,
device_name: String,
humidity: Long,

ip: String,

latitude: Double,
longitude: Double,

scale: String,

temp: Long,

timestamp: Long

D)

// fetch the JSON device information uploaded into the Filestore
val jsonFile = “/databricks-datasets/data/iot/iot_devices.json”

// read the json file and create the dataset from the case class DeviceloTData
// ds is now a collection of JVM Scala objects DeviceIoTData

val ds = spark.read.json(jsonFile).as[DeviceIoTData]

Section 4

19

DataSets

Viewing a Dataset

To view this data in a tabular format, instead of exporting this data out
to a third party tool, you can use the Databricks display() command. That
is, once you have loaded the JSON data and converted into a Dataset

for your type-specific collection of JVM objects, you can view them as
you would view a DataFrame, by using either display() or using standard

Spark commands, such as take(), foreach(), and printin() API calls.

// display the dataset table just read in from the JSON file

display(ds)
v =
usql select cca3, count{distinct device_id) as device_id from iot_device_data growp by ccas order by cevice_id desc limit 128
s
§ Sweaer: 2} > i
. Carmds &
-
Onea
Crie

B & v PoeOgtons &

Send feadback
7 143 O NOR Norway 2 sonsor-pad-2n2Poa T 2131812541 6247 rd 615 Cosus 11 1458444054119
2 w6 T MA nay B device-mac-36TWSKT “ s 4285 red 1263 Cesus 19 1456444054120
6 1080 US USA UnitedSiates s sensor-pad-4maWiz % 6639170154 4405 yelow -12132 Celsus 28 1458444054121
B @1 PH PHL Phiippnes s tnorm-stick-sgimpUIB8 @ 20082419 1458 guon 12007 Cosus 25 1458444054122
3 1210 US USA Unitod States B sensor-pad-6aTATAGR 51 2011610567 3593 yolow 8545 Celsus 27 1458444054122
3 129 N CHN China 7 metevgage-7GeDoanM 26 2201731791 2282 yolow 10832 Celsus 18 1458444054123
o 196 P PN Japan s sensorpad-®UDGREQl 35 2104731771 3560 rod 19969 Cesus 27 1458444054123
3 & o PN dapan B device-mac-9GciZ2pw 8 1182066227 3569 geen 19969 Celsus 13 1458444054124
= F] &

Getting started with Apache Spark on Azure Databricks

Section 4

20

DataSets

// Using the standard Spark commands, take() and foreach(), print the first
// 10 rows of the Datasets.
ds.take(10).foreach(println(_))

» (1) Spark Jobs

DeviceloTData(8,868,US,USA,United States,l,meter-gauge-1xbYRYcj,51,68.
DeviceloTData(7,1473,NO,NOR,Norway,2,sensor-pad-2n2Pea,70,213.161.
DeviceloTData(2,1556,IT,ITA,Italy,3,device-mac-36TWSKiT,44,88.36.5.
DeviceloTData(6,1080,US,USA,United States,4,sensor-pad-4mzWkz,32,66.39.
DeviceloTData(4,931,PH,PHL,Philippines,5,therm-stick-5gimpUrBB,62,203.
DeviceloTData(3,1210,US,USA,United States,6,sensor-pad-6al7RTAcbR,51,2

DeviceloTData(3,1129,CN,CHN,China,7,meter-gauge-7GeDoanM,26,220.173.17
DeviceloTData(®@,1536,JP,JPN,Japan,8,sensor-pad-8xUD6pzsQI,35,210.173.

DeviceloTData(3,807,JP,]PN,Japan,9,device-mac-9GcjZ2pw,85,118.23.68.22

DeviceloTData(7,1470,US,USA,United States,10,sensor-pad-10BsywSYUF,56,2

ommand took 1.18s -- by jules.damji@gmail.com at 5/16/2016, 7:12:05 PM or

Processing and Visualizing a Dataset

An additional benefit of using the Azure Databricks display() command
is that you can quickly view this data with a number of embedded
visualizations. For example, in a new cell, you can issue SQL queries and

click on the map to see the data. But first, you must save your dataset, ds,

as a temporary table.

// registering your Dataset as a temporary table to which you can issue SQL
queries
ds.createOrReplaceTempView("iot_device_data")

Getting started with Apache Spark on Azure Databricks

Section 4

21

DataSets Getting started with Apache Spark on Azure Databricks Section 4

Saql salect cca3, court(distinct device_id) as device 1d frem 1ot device data grewp by ccad erder by device_id desc Uinft 100 // filter out all devices whose temperature exceed 25 degrees and generate
// another Dataset with three fields that of interest and then display

// the mapped Dataset

val dsTemp = ds.filter(d => d.temp > 25).map(d => (d.temp, d.device_name,

o d.cca3)

’ oy display(dsTemp)

Send feedback

Like RDD, Dataset has transformations and actions methods. Most
importantly are the high-level domain specific operations such as sum(),
select(), avg(), join(), and union() that are absent in RDDs. For more

information, look at the Scala Dataset API.

Let's look at a few handy ones in action. In the example below, we
use filter(), map(), groupBy(), and avg(), all higher-level methods, to
create another Dataset, with only fields that we wish to view. What's
noteworthy is that we access the attributes we want to filter by their
names as defined in the case class. That is, we use the dot notation to

access individual fields. As such, it makes code easy to read and write.

22

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset

DataSets

» (1) Spark Jobs

=
meter-gauge-1XbYRYc]
sensor-pad-4mzWkz
sensor-pad-6al7RTAGbR
‘sensor-pad-8xUD6pzsQl

2 sensor-pad-10BsyWSYUF 10 usa
31 meter-gauge-17z08Fghhl 1 usa
31 sensor-pad-18KULNOXV 18 CHN
20 meter-gauge-19eg18pICO 19 usa
£ device-mac-21sizsh 21 AUT
@ |- &

// Apply higher-level Dataset API methods such as groupBy() and avgQ).
// Filter temperatures > 25, along with their corresponding

// devices' humidity, compute averages, groupBy cca3 country codes,

// and display the results, using table and bar charts

val dsAvgTmp = ds.filter(d => {d.temp > 25}).map(d => (d.temp, d.humidity,
d.cca3)).groupBy($"_3").avg

// display averages as a table, grouped by the country

Getting started with Apache Spark on Azure Databricks

// display the averages as bar graphs, grouped by the country
display(dsAvgTmp)

» (2) Spark Jobs

100

avg(_1), avg(2)
& 3 8

o

ITA° UKR GBR THA AUT USA KOR CAN RUS SWE ECU CHN DEU JPN CHE
3

@ al - PotOptons. &

Command took 1.05s

Hdadidladind ™

M avg(1)

PHL

// Select individual fields using the Dataset method select()
// where battery_level is greater than 6. Note this high-level
// domain specific language API reads like a SQL query
display(ds.select($"battery_level) $"c02_level; $"device_name").
where($"battery_level” > 6).sort($"c@2_level"))

display(dsAvgTmp)

» (2) Spark Jobs

3 avg(_1) avg(2)

FRA 32.333333333333336 66.66666666666667
A 26 74

UKR 29 %

GBR 33 26
THA 30 67

AUT 30 44

USA 28.76923076923077 65.23076923076923
KOR 28 52

CAN 30 65

B 4~ &

Command took 1.65s

» (1) Spark Jobs

battery_level c02_level device_name

8 857 sensor-pad-46MiQ33UDaaa
8 868 meter-gauge-1xbYRYcj

8 934 meter-gauge-712JgErD0zVw
7 940 sensor-pad-34F1Jubre3B

9 986 sensor-pad-48ijtdel.

7 997 therm-stick-55kEAHLQWnO
7 1131 therm-stick-35Lg804z

7 1155 sensor-pad-20gFNfBgqr

7 1160 meter-gauge-61NehO8Msi

8 a4 v &

Command took 0.27s

Section 4

23

DataSets

Below is an example showing how quickly you can go from table to map

to charts using Datasets and Azure Databricks display() command.

Having saved the Dataset of DeviceloTData as a temporary table, you

can issue SQL queries to it.

%sql select cca3, count (distinct device_id) as device_id from
iot_device_data group
by cca3 order by device_id desc limit 100

5sql select cca3, count(distinct device_id) as device_id from ior_device_cata group By cca3 order by cevice_id desc Limit 126

Send fescback

Getting started with Apache Spark on Azure Databricks

Section 4

24

Getting started with Apache Spark on Azure Databricks Section 5

DataFrames

DataFrames

Overview
To access all the code examples in this stage, please import the

Population vs. Price DataFrames notebook.

Apache Spark DataFrames were created to run Spark programs faster
from both a developer and an execution perspective. With less code
to write and less data to read, the Catalyst optimizer solves common
problems efficiently and faster using DataFrame functions (e.g. select
columns, filtering, joining different data sources, aggregation, etc.).
DataFrames also allow you to seamlessly intermix operations with

custom SQL, Python, Java, R, or Scala code.

Accessing the sample data

The easiest way to work with DataFrames is to access an example
dataset. We have made a number of datasets available in the /
databricks-datasets folder which is accessible within the Databricks
platform. For example, to access the file that compares city population
vs. median sale prices of homes, you can access the file /databricks-

datasets/samples/population-vs-price/data_geo.csv.

Getting started with Apache Spark on Azure Databricks Section 5

We will use the spark-csv package from Spark Packages (a community
index of packages for Apache Spark) to quickly import the data, specify

that a header exists, and infer the schema.

Note, the spark-csv package is embedded into Spark 2.0.

Use the Spark CSV datasource with options specifying:

- First line of file is a header

- Automatically infer the schema of the data

data = sqlContext.read.format("csv")
.option("header’, "true")
.option("inferSchema’j "true")
.load("/databricks-datasets/samples/population-vs-price/data_geo.csv")

data.cache() # Cache data for faster reuse
data = data.dropna() # drop rows with missing values

26

http://go.databricks.com/hubfs/notebooks/Pop._vs._Price_Multi-Chart.html
http://spark-packages.org/package/databricks/spark-csv
http://spark-packages.org/

Dataframes Getting started with Apache Spark on Azure Databricks

To view this data in a tabular format, instead of exporting this data out

Register table so it is accessible via SQL Context to a third party tool, you can use the display() command within
For Apache Spark = 2.0 .
data.createOrReplaceTempView("data_geo™) Azure Databricks.

Viewing the DataFrame
Now that you have created the data DataFrame, you can quickly access

> display(data)

» (2) Spark Jobs

the data using standard Spark commands such as take(). For example, 2014 v ety -~ crote Code
you can use the command data.take(10) to view the first ten rows of the o Eimingham Hiabama e e
125 Huntsville Alabama AL 188226
data DataFrame. 122 Mobile Alabama AL 194675
114 Meontgomery Alabama AL 200481
64 Anchorage[19] Alaska AK 301010
78 Chandler Arizona AZ 254276
86 Gilbert[20] Arizona AZ 239277
88 Glendale Arizona AZ 287517
data.take(18) F; a - &“‘” e v o

Command took 1.83s
v (1) Spark Jobs
out[3]:
[Row(2614 rank=181, City=u'Birmingham', State=u'Alabama', State Code=u'AL', 20
Row(2014 rank=125, City=u'Huntsville', State=u'Alabama', State Code=u'AL', 20
Row(2014 rank=122, City=u'Mobile', State=u'Alabama', State Code=u'AL', 2014 P
Row(2014 rank=114, City=u'Montgomery', State=u'Alabama', State Code=u'AL', 20
Row(2014 rank=64, City=u'Anchorage[19]', State=u'Alaska’', State Code=u'AK', 2
Row(2014 rank=78, City=u'Chandler', State=u'Arizona', State Code=u'AZ', 2014
Row(2014 rank=86, City=u'Gilbert[20]', State=u'Arizona', State Code=u'AZ', 20
Row(2014 rank=88, City=u'Glendale', State=u'Arizona', State Code=u'AZ', 2014
Row(2014 rank=38, City=u'Mesa', State=u'Arizona', State Code=u'AZ', 2814 Popu
Row(2014 rank=148, City=u'Peoria', State=u'Arizona', State Code=u'AZ', 2014 P

Command took 6.12s

Section 5

27

Dataframes

Getting started with Apache Spark on Azure Databricks Section 5

Visualizing your DataFrame
An additional benefit of using the Azure Databricks display() command

is that you can quickly view this data with a number of embedded

Below is an example showing how quickly you can go from table to map
using DataFrames and the Azure Databricks display() command.

visualizations. For example, in a new cell, you can specify the following
SQL query and click on the map.

maql select Szate Code”, "2033 sedian sales price’ from daca

%sql select 'State Code} '2015 median sales price' from data

%sql select “State Code’, 2015 median sales price’ from data

Wagl sslect « frea data_gen Limle 207
» (2) Spark Jobs
+ M 3000-4000
: W 2000-3000
1000-2000
0-1000
N/A

® & ~ PlotOptons. &

28

Getting started with Apache Spark on Azure Databricks Section 6

Machine learning

Machine learning

Overview

To access all the code examples in this stage, please import the
Population vs. Price Linear Regression notebook. As organizations
create more diverse and more user-focused data products and
services, there is a growing need for machine learning, which can be
used to develop personalizations, recommendations, and predictive
insights. Apache Spark’s Machine Learning Library (MLIib) allows data
scientists to focus on their data problems and models instead of solving
the complexities surrounding distributed data (such as infrastructure,

configurations, and so on).

Accessing the sample data

The easiest way to work with DataFrames is to access an example
dataset. We have made a number of datasets available in the /
databricks-datasets folder which is accessible from Azure Databricks. For
example, to access the file that compares city population vs. median sale
prices of homes, you can access the file /databricks-datasets/samples/

population-vs-price/data_geo.csv.

Getting started with Apache Spark on Azure Databricks Section 6

We will use the spark-csv package from Spark Packages (a community
index of packages for Apache Spark) to quickly import the data, specify

that a header exists, and infer the schema.

Note, the spark-csv package is embedded into Spark 2.0.

Use the Spark CSV datasource with options specifying:

- First line of file is a header

- Automatically infer the schema of the data

data = sqglContext.read.format("csv")
.option("header’, "true")
.option("inferSchema; "true")
.load("/databricks-datasets/samples/population-vs-price/data_geo.csv'")

data.cache() # Cache data for faster reuse
data = data.dropna() # drop rows with missing values

Register table so it is accessible via SQL Context

For Apache Spark = 2.0
data.createOrReplaceTempView("data_geo™)

30

https://go.databricks.com/hubfs/notebooks/Pop._vs._Price_LR.html
https://spark-packages.org/package/databricks/spark-csv
https://spark-packages.org/

Machine learning

To view this data in a tabular format, instead of exporting this data out to

a third party tool, you can use the display() command within Databricks.

> display(data)

» (2) Spark Jobs

2014 rank

101
125
122
114

city
Birmingham
Huntsville
Mobile
Montgomery
Anchorage[19]
Chandler
Gilbert[20]
Glendale

state
Albama
Alabama
Abama
Alabama
Aaska
Arizona
Avizona
Arizona

State Code
AL
AL
AL
AL

AK
az
Az
az

2014 Population estimate
212247
188226
194675
200481
301010
254276
230277
237517

2015 median sales price
162.9

157.7

1225

129

null

null

null

null

Getting started with Apache Spark on Azure Databricks Section 6

Prepare and visualize data for ML algorithms
In supervised learning—such as a regression algorithm—you typically
will define a label and a set of features. In our linear regression
example, the label is the 2015 median sales price while the feature is
the 2014 Population Estimate. That is, we are trying to use the feature
(population) to predict the label (sales price). To simplify the creation of
features within Python Spark MLIib, we use LabeledPointto convert the

feature (population) to a Vector type.

convenience for specifying schema
from pyspark.mllib.regression import LabeledPoint

data = data.select("2014 Population estimate’, "2015 median sales price")
.map(lambda r: LabeledPoint(r[1], [r[@]11D)
.toDFQO)

display(data)

31

https://azure.microsoft.com/en-us/free/services/databricks/

Machine learning

features label
» {"type":1,"size":1,"indices":[], "values":[212247]} 162.9
b {"type":1,"size":1,"indices":[], "values":[188226]} 157.7
r {"type":1,"size":1,"indices":[], "values":[1894675]} 122.5
b {"type":1,"size":1, " indices":[], "values":[200481]} 129
r {"type":1,"size":1,"indices":[], "values":[1537058]} 206.1
F{"type":1,"size":1, "indices":[], "values":[527972]} 178.1
&

Executing Linear Regression Model

In this section, we will execute two different linear regression models
using different regularization parameters and determine its efficacy.

That is, how well do either of these two models predict the sales price

(label) based on the population (feature).

Getting started with Apache Spark on Azure Databricks Section 6

Building the model

Import LinearRegression class
from pyspark.ml.regression import LinearRegression

Define LinearRegression algorithm
1r = LinearRegression()

Fit 2 models, using different regularization parameters

modelA = 1r.fit(data, {lr.regParam:0.0})
modelB = lr.fit(data, {lr.regParam:100.0}

Using the model, we can also make predictions by using the transform()
function which adds a new column of predictions. For example, the
code below takes the first model (modelA) and shows you both the label
(original sales price) and prediction (predicted sales price) based on the

features (population).

32

Machine learning

Make predictions
predictionsA = modelA
display(predictionsA)

features

F{"type":1,"size":1, "indices":[],"
r {"type":1,"size":1, "indices":[],"
»{"type":1,"size"11, "indices":[],"
»{"type":1,"size"11, "indices":[],"
»{"type":1,"size"11, "indices":[],"
»{"type":1,"size":1, "indices":[],"
F{"type":1,"size":1, "indices":[],"
F{"type":1,"size":1, "indices":[],"

bl i ted S it

3

.transform(data)

values":[212247]}
values":[18B226]}
values":[194675]}
values":[200481]}
values":[1537058]}
values":[627972]}
values":[197706]}
values":[346997]}

Sanlecmn L IAAAGAE AT

label
162.9
157.7
122.5
129

206.1
178.1
131.8
685.7

ana 7

prediction
199.31676595846622
198.40882267887178
188.65258131548575
188.8720359044423
249.39183544694856
211.2505069330287
198.76714674075743
204.41003255541705

AN FnTnT40ceAns

Getting started with Apache Spark on Azure Databricks Section 6

Evaluating the Model
To evaluate the regression analysis, we will calculate the root mean
square error using the RegressionEvaluator. Below is the pySpark code

for evaluating the two models and their output.

from pyspark.ml.evaluation import RegressionEvaluator
evaluator = RegressionEvaluator(metricName="rmse")

RMSE = evaluator.evaluate(predictionsA)

print("ModelA: Root Mean Squared Error = " + str(RMSE))

ModelA: Root Mean Squared Error = 128.602026843
predictionsB = modelB.transform(data)
RMSE = evaluator.evaluate(predictionsB)

print("ModelB: Root Mean Squared Error = " + str(RMSE))

ModelB: Root Mean Squared Error = 129.496300193

33

Machine learning Getting started with Apache Spark on Azure Databricks

As is typical for many machine learning algorithms, you will want to

visualize the scatterplot. Azure Databricks supports Python pandas and
ggplot, the code below creates a linear regression plot using Python 10 8
Pandas DataFrame (pydf) and ggplot to display the scatterplot and the

two regression models.

. .,
LLI)

Import numpy, pandas, and ggplot
import numpy as np

from pandas import *

from ggplot import *

10°- .

price

Create Python DataFrame

pop = data.map(lambda p: (p.features[@])).collect()

price = data.map(lambda p: (p.label)).collect()

predA = predictionsA.select("prediction™).map(lambda r: r[@]).collect()

predB = predictionsB.select("prediction").map(lambda r: r[@]).collect()
104

1 -
pydf = DataFrame({'pop':pop,price':price,predA':predA, 'predB':predB}) 10 A0 -

Visualizing the Model

Create scatter plot and two regression models (scaling exponential) using
ggplot

p = ggplot(pydf, aes('popiprice")) +

geom_point(color="blue') +

geom_line(pydf, aes('pop;jpredA'), color="red") +

geom_line(pydf, aes('pop;predB'), color='green') +

scale_x_logl@() + scale_y_loglo()

display(p)

Section 6

34

Getting started with Apache Spark on Azure Databricks Section 7

Streaming

Streaming

Overview

To access all the code examples in this stage, please import the
Streaming Wordcount notebook. To help introduce Apache Spark
Streaming, we will be going through the Streaming Wordcount example
—the “Hello World” example of Spark Streaming which counts words

on 1-second batches of streaming data. It uses an in-memory string
generator as a dummy source for streaming data. Please refer to the
Streaming Wordcount notebook to execute this streaming job as this

guide will focus on the primary coding components.

Ackia 5
% kafka ‘ streaming data train models
\—’ with live data
Amazo sources
N
7
SN
7
cassandra Mysau process with
static data DataFrames

P ACH

HBRSE closticsearch

sources

.mongoDB % Parquet

PostgreSQL

MLlib
machine learning
use trained
| systems @,
Spark Streaming > 4

Getting started with Apache Spark on Azure Databricks Section 7

Apache Spark Streaming Concepts

Apache Spark Streaming is a scalable fault-tolerant streaming processing
system. As part of Apache Spark”, it integrates with MLIib, SQL,
DataFrames, and GraphX. As for Spark 2.0, we will also release Structured

Streaming so you can work with Streaming DataFrames.

model §€ kafka

elasticsearch
data storage

HBRASE

interactively 7 Parquet
query with SQL
Spark SQL memsql
SQL + DataFrames

36

Streaming

Sensors, loT devices, social networks, and online transactions are all
generating data that needs to be monitored constantly and acted upon
quickly. As a result, the need for large-scale, real-time stream processing
is more evident than ever before. There are there are four broad ways

Spark Streaming is being used today:

+ Streaming ETL — Data is continuously cleaned and aggregated
before being pushed into data stores.

« Triggers — Anomalous behavior is detected in real-time and
further downstream actions are triggered accordingly. E.g. unusual
behavior of sensor devices generating actions.

» Data enrichment — Live data is enriched with more information by
joining it with a static dataset allowing for a more complete
real-time analysis.

+ Complex sessions and continuous learning — Events related to
a live session (e.g. user activity after logging into a website or
application) are grouped together and analyzed. In some cases,
the session information is used to continuously update machine

learning models.

— Spark Streaming —

III Spark II—>

Batches Results

e —

Data streams

wv
—
o
=
]
O
Q
(24

Getting started with Apache Spark on Azure Databricks Section 7

In general, Spark Streaming works by having a set of receivers that
receive data streams and chop them up into little batches. Spark then

processes these batches and pushes out the results.

StreamingContext

Define the function that sets up the StreamingContext

As noted in the previous section, Spark Streaming requires two
components: a receiver and a function that creates and sets up the
streaming computation. For this Streaming Word Count example in this
guide, we will focus on the function as this is the primary logic. Please
reference the Streaming Word Count notebook to review the custom

receiver as the dummy source.

37

Streaming Getting started with Apache Spark on Azure Databricks Section 7

// This is the dummy source implemented as a custom receiver. No need to understand
this.

import scala.util.Random

import org.apache.spark.streaming.receiver._

class DummySource(ratePerSec: Int) extends Receiver[String](Storagelevel .MEMORY_AND_

DISK_2) {

}

/7

// This 1is the function that creates and sets up the streaming computation

/7

var newContextCreated = false // Flag to detect whether new context was created
or not

// Function to create a new StreamingContext and set it up
def creatingFunc(): StreamingContext = {

// Create a StreamingContext
val ssc = new StreamingContext(sc, Seconds(batchIntervalSeconds))

// Create a stream that generates 1000 lines per second
val stream = ssc.receiverStream(new DummySource(eventsPerSecond))

// Split the lines into words, and then do word count
val wordStream = stream.flatMap { _.split(" ") 1}
val wordCountStream = wordStream.map(word => (word, 1)).reduceByKey(_ + _)

// Create temp table at every batch interval
// For Apache Spark = 2.0
/ rdd.toDF("word} "count").createOrReplaceTempView("batch_word_count")
wordCountStream.foreachRDD { rdd =>
rdd.toDF("word} "count™).createOrReplaceTempView("batch_word_count™)

}

stream.foreachRDD { rdd =>
System.out.println("# events = " + rdd.count())
System.out.println("t " + rdd.take(10).mkString(; ") + § ...")

¥

ssc.remember(Minutes(1)) // To make sure data is not deleted by the time we
query it interactively

println(“Creating function called to create new StreamingContext”)

newContextCreated = true
ssc

38

Streaming

Start Streaming Job: Stop existing
StreamingContext if any and start/restart
the new one

Here we are going to use the configurations at the top of the notebook

to decide whether to stop any existing StreamingContext, and start a

new one, or recover one from existing checkpoints.

// Stop any existing StreamingContext
if (stopActiveContext) {

StreamingContext.getActive.foreach { _.stop(stopSparkContext = false) }
}

// Get or create a streaming context
val ssc = StreamingContext.getActiveOrCreate(creatingFunc)
if (newContextCreated) {
println("New context created from currently defined creating function™)
} else {
println("Existing context running or recovered from checkpoint, may not be
running currently defined creating function™)

}

// Start the streaming context in the background.
ssc.start()

// This 1is to ensure that we wait for some time before the background
streaming job starts. This will put this cell on hold for 5 times the
batchIntervalSeconds
ssc.awaitTerminationOrTimeout(batchIntervalSeconds * 5 * 1000)

Getting started with Apache Spark on Azure Databricks Section 7

Interactive Querying
As you can see from the example below, the below query will change
every time you execute it to reflect the current word count based on the

input stream of data.

%sql select * from batch_word_count

» {2} Spark Jobs

word count

~N & WD O o
-]

g

Once you are done, just execute the statement below to stop the

streaming context.

StreamingContext.getActive.foreach { _.stop(stopSparkContext = false) }

39

In CIOSing =% Microsoft

We hope you found this tutorial helpful in
getting started on Spark. If you have further
questions, be sure to visit azure.com/databricks.

Copyright © 2018 Microsoft, Inc. All rights reserved. This content is for informational purposes only. Microsoft makes no warranties, express or implied, with respect to the information presented here.

40

https://azure.microsoft.com/en-us/services/databricks/

