
Loan Risk Analysis with
Databricks and XGBoost
A Databricks guide, including code samples
and notebooks.

http://dbricks.co/2eI3AQZ

Data is the new fuel. The potential for Machine Learning
and Deep Learning practitioners to make a breakthrough
and drive positive outcomes is unprecedented. But how
to take advantage of the myriad of data and ML tools now
available at our fingertips? How to streamline processes,
speed up discovery, and scale implementations for real-
life scenarios?

Databricks Unified Analytics Platform is a cloud-service
designed to provide you with ready-to-use clusters that
can handle all analytics processes in one place, from data
preparation to model building and serving, with virtually
no limit so that you can scale resources as needed.

In this eBook, we will walk you through a practical end-to-end
Machine Learning use case on Databricks:

• A loan risk analysis use case, that covers importing and exploring
data in Databricks, executing ETL and the ML pipeline, including
model tuning with XGBoost Logistic Regression.

Introduction

“� �Working in Databricks is like getting a seat
in first class. It’s just the way flying (or more
data science-ing) should be.”

— Mary Clair Thompson, Data Scientist, Overstock.com

2

http://dbricks.co/2eI3AQZ

For companies that make money off of interest on loans held by their

customer, it’s always about increasing the bottom line. Being able to

assess the risk of loan applications can save a lender the cost of holding

too many risky assets. It is the data scientist’s job to run analysis on

your customer data and make business rules that will directly impact

loan approval.

The data scientists that spend their time building these machine

learning models are a scarce resource and far too often they are siloed

into a sandbox:

• Although they work with data day in and out, they are dependent on

the data engineers to obtain up-to-date tables.

• With data growing at an exponential rate, they are dependent on the

infrastructure team to provision compute resources.

• Once the model building process is done, they must trust software

developers to correctly translate their model code to production

ready code.

This is where the Databricks Unified Analytics Platform can help bridge

those gaps between different parts of that workflow chain and reduce

friction between the data scientists, data engineers, and software engineers.

Loan Risk Analysis

In addition to reducing operational friction, Databricks is a central

location to run the latest Machine Learning models. Users can leverage

the native Spark MLLib package or download any open source Python or

R ML package. With Databricks Runtime for Machine Learning, Databricks

clusters are preconfigured with XGBoost, scikit-learn, and numpy as

well as popular Deep Learning frameworks such as TensorFlow, Keras,

Horovod, and their dependencies.

In this eBook, we will explore how to:

• Import our sample data source to create a Databricks table

• Explore your data using Databricks Visualizations

• Execute ETL code against your data

• Execute ML Pipeline including model tuning XGBoost Logistic Regression
3

https://databricks.com/product/unified-analytics-platform
http://dbricks.co/2eI3AQZ

IMPORT DATA
For our experiment, we will be using the public Lending Club Loan Data. It

includes all funded loans from 2012 to 2017. Each loan includes applicant

information provided by the applicant as well as the current loan status

(Current, Late, Fully Paid, etc.) and latest payment information. For more

information, refer to the Lending Club Data schema.

Once you have downloaded the data locally, you can create a database

and table within the Databricks workspace to load this dataset. For more

information, refer to Databricks Documentation > User Guide > Databases

and Tables > Create a Table.

In this case, we have created the Databricks Database amy and table

loanstats_2012_2017. The following code snippet allows you to access

this table within a Databricks notebook via PySpark.

EXPLORE YOUR DATA

With the Databricks display command, you can make use of the Databricks

native visualizations.

In this case, we can view the asset allocations by reviewing the loan grade

and the loan amount.

View bar graph of our data
display(loan_stats)

Import loan statistics table
loan_stats = spark.table(“amy.loanstats_2012_2017”)

4

https://www.kaggle.com/wendykan/lending-club-loan-data#database.sqlite
https://databricks.com/wp-content/uploads/2018/08/image4-1.png
https://databricks.com/wp-content/uploads/2018/08/image4-1.png
https://www.kaggle.com/wendykan/lending-club-loan-data#LCDataDictionary.xlsx
https://docs.databricks.com/user-guide/tables.html#create-a-table
https://docs.databricks.com/user-guide/tables.html#create-a-table
http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

MUNGING YOUR DATA WITH THE PYSPARK DATAFRAME API
As noted in Cleaning Big Data (Forbes), 80% of a Data Scientist’s work is
data preparation and is often the least enjoyable aspect of the job. But
with PySpark, you can write Spark SQL statements or use the PySpark
DataFrame API to streamline your data preparation tasks. Below is a code
snippet to simplify the filtering of your data.

After this ETL process is completed, you can use the display command
again to review the cleansed data in a scatter plot.

View bar graph of our data
display(loan_stats)

Import loan statistics table
loan_stats = loan_stats.filter(\
 loan_stats.loan_status.isin(\
 [“Default”, “Charged Off”, “Fully Paid”]
)\
).withColumn(
 “bad_loan”,
 (~(loan_stats.loan_status == “Fully Paid”)
).cast(“string”))

5

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#7f1ba2eb6f63
http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

TRAINING OUR ML MODEL USING XGBOOST
While we can quickly visualize our asset data, we would like to see if we

can create a machine learning model that will allow us to predict if a

loan is good or bad based on the available parameters. As noted in the

following code snippet, we will predict bad_loan (defined as label) by

building our ML pipeline as follows:

• Executes an imputer to fill in missing values within the numerics

attributes (output is numerics_out)

• Using indexers to handle the categorical values and then converting

them to vectors using OneHotEncoder via oneHotEncoders (output is

categoricals_class).

• The features for our ML pipeline are defined by combining the

categorical_class and numerics_out.

• Next, we will assemble the features together by executing the

VectorAssembler.

• As noted previously, we will establish our label (i.e. what we are going

to try to predict) as the bad_loan column.

• Prior to establishing which algorithm to apply, apply the standard scaler

to build our pipeline array (pipelineAry).

To view this same asset data broken out by state on a map visualization,

you can use the display command combined with the PySpark

DataFrame API using group by statements with agg (aggregations) such

as the following code snippet.

View map of our asset data
display(loan_stats.groupBy(“addr_state”).agg((count(col(“annual_
inc”))).alias(“ratio”)))

While the previous code snippets are in Python, the following code examples
are written in Scala to allow us to utilize XGBoost4J-Spark. The notebook
series includes Python code that saves the data in Parquet and subsequently
reads the data in Scala.

6

https://s3.us-east-2.amazonaws.com/databricks-dennylee/notebooks/loan-risk-analysis.dbc
https://s3.us-east-2.amazonaws.com/databricks-dennylee/notebooks/loan-risk-analysis.dbc
http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

// Imputation estimator for completing missing values
val numerics_out = numerics.map(_ + “_out”)
val imputers = new Imputer()
 .setInputCols(numerics)
 .setOutputCols(numerics_out)

// Apply StringIndexer for our categorical data
val categoricals_idx = categoricals.map(_ + “_idx”)
val indexers = categoricals.map(
 x => new StringIndexer().setInputCol(x).setOutputCol(x +
“_idx”).setHandleInvalid(“keep”)
)

// Apply OHE for our StringIndexed categorical data
val categoricals_class = categoricals.map(_ + “_class”)
val oneHotEncoders = new OneHotEncoderEstimator()
 .setInputCols(categoricals_idx)
 .setOutputCols(categoricals_class)

// Set feature columns
val featureCols = categoricals_class ++ numerics_out

// Create assembler for our numeric columns (including label)
val assembler = new VectorAssembler()
 .setInputCols(featureCols)
 .setOutputCol(“features”)

// Establish label
val labelIndexer = new StringIndexer()
 .setInputCol(“bad_loan”)
 .setOutputCol(“label”)

// Apply StandardScaler
val scaler = new StandardScaler()
 .setInputCol(“features”)
 .setOutputCol(“scaledFeatures”)
 .setWithMean(true)
 .setWithStd(true)

// Build pipeline array
val pipelineAry = indexers ++ Array(oneHotEncoders, imputers,
assembler, labelIndexer, scaler)

// Create XGBoostEstimator
val xgBoostEstimator = new XGBoostEstimator(
 Map[String, Any](
 “num_round” -> 5,
 “objective” -> “binary:logistic”,
 “nworkers” -> 16,
 “nthreads” -> 4
)
)
 .setFeaturesCol(“scaledFeatures”)
 .setLabelCol(“label”)

// Create XGBoost Pipeline
val xgBoostPipeline = new Pipeline().setStages(pipelineAry ++
Array(xgBoostEstimator))

// Create XGBoost Model based on the training dataset
val xgBoostModel = xgBoostPipeline.fit(dataset_train)

// Test our model against the validation dataset
val predictions = xgBoostModel.transform(dataset_valid)
display(predictions.select(“probabilities”, “label”))

Now that we have established out pipeline, let’s create our XGBoost

pipeline and apply it to our training dataset.

Note, that “nworkers” -> 16, “nthreads” -> 4 is configured as the

instances used were 16 i3.xlarges.

Now that we have our model, we can test our model against the validation

dataset with predictions containing the result.

7

http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

REVIEWING MODEL EFFICACY
Now that we have built and trained our XGBoost model, let’s determine its

efficacy by using the BinaryClassficationEvaluator.

TUNE MODEL USING MLLIB CROSS VALIDATION
We can try to tune our model using MLlib cross validation via

CrossValidator as noted in the following code snippet. We

first establish our parameter grid so we can execute multiple

runs with our grid of different parameter values. Using the same

BinaryClassificationEvaluator that we had used to test the model

efficacy, we apply this at a larger scale with a different combination of

parameters by combining the BinaryClassificationEvaluator and

ParamGridBuilder and apply it to our CrossValidator().

Upon calculation, the XGBoost validation data area-under-curve

(AUC) is: ~0.6520.

// Include BinaryClassificationEvaluator
import org.apache.spark.ml.evaluation.
BinaryClassificationEvaluator

// Evaluate
val evaluator = new BinaryClassificationEvaluator()
 .setRawPredictionCol(“probabilities”)

// Calculate Validation AUC
val accuracy = evaluator.evaluate(predictions)

// Build parameter grid
val paramGrid = new ParamGridBuilder()
 .addGrid(xgBoostEstimator.maxDepth, Array(4, 7))
 .addGrid(xgBoostEstimator.eta, Array(0.1, 0.6))
 .addGrid(xgBoostEstimator.round, Array(5, 10))
 .build()

// Set evaluator as a BinaryClassificationEvaluator
val evaluator = new BinaryClassificationEvaluator()
 .setRawPredictionCol(“probabilities”)

// Establish CrossValidator()
val cv = new CrossValidator()
 .setEstimator(xgBoostPipeline)
 .setEvaluator(evaluator)
 .setEstimatorParamMaps(paramGrid)
 .setNumFolds(4)

// Run cross-validation, and choose the best set of parameters.
val cvModel = cv.fit(dataset_train)

Note, for the initial configuration of the XGBoostEstimator, we use
num_round but we use round (num_round is not an attribute in
the estimator)

This code snippet will run our cross-validation and choose the best

set of parameters. We can then re-run our predictions and re-calculate

the accuracy.

// Test our model against the cvModel and validation dataset
val predictions_cv = cvModel.transform(dataset_valid)
display(predictions_cv.select(“probabilities”, “label”))

// Calculate cvModel Validation AUC
val accuracy = evaluator.evaluate(predictions_cv)

8

http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

Our accuracy increased slightly with a value ~0.6734.

You can also review the bestModel parameters by running the

following snippet.

// Review bestModel parameters
cvModel.bestModel.asInstanceOf[PipelineModel].stages(11).
extractParamMap

display(predictions_cv.groupBy(“label”, “prediction”).
agg((sum(col(“net”))/(1E6)).alias(“sum_net_mill”)))

QUANTIFY THE BUSINESS VALUE
A great way to quickly understand the business value of this model is to

create a confusion matrix. The definition of our matrix is as follows:

• Label=1, Prediction=1 :

Correctly found bad loans. sum_net = loss avoided.

• Label=0, Prediction=1 :

Incorrectly labeled bad loans. sum_net = profit forfeited.

• Label=1, Prediction=0 :

Incorrectly labeled good loans. sum_net = loss still incurred.

• Label=0, Prediction=0 :

Correctly found good loans. sum_net = profit retained.

The following code snippet calculates the following confusion matrix.

To determine the value gained from implementing the model, we can

calculate this as

Our current XGBoost model with AUC = ~0.6734, the values note the

significant value gain from implementing our XGBoost model.

• value (XGBoost): 22.076

value = -(loss avoided - profit forfeited)

Note, the value referenced here is in terms of millions of dollars saved from
prevent lost to bad loans.

9

http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

SUMMARY
We demonstrated how you can quickly perform loan risk analysis

using the Databricks Unified Analytics Platform (UAP) which

includes the Databricks Runtime for Machine Learning. With

Databricks Runtime for Machine Learning, Databricks clusters are

preconfigured with XGBoost, scikit-learn, and numpy as well as

popular Deep Learning frameworks such as TensorFlow, Keras,

Horovod, and their dependencies.

By removing the data engineering complexities commonly

associated with such data pipelines, we could quickly import

our data source into a Databricks table, explore your data using

Databricks Visualizations, execute ETL code against your data,

and build, train, and tune your ML pipeline using XGBoost

logistic regression.

Start experimenting with this free Databricks notebook.

10

https://databricks.com/product/unified-analytics-platform
https://databricks.com/blog/2018/06/05/distributed-deep-learning-made-simple.html
https://s3.us-east-2.amazonaws.com/databricks-dennylee/notebooks/loan-risk-analysis.dbc
http://dbricks.co/2eI3AQZ
http://dbricks.co/2eI3AQZ

Databricks, founded by the original creators of Apache Spark™,
is on a mission to accelerate innovation for our customers by
unifying data science, engineering and business teams. The
Databricks Unified Analytics Platform powered by Apache Spark
enables data science teams to collaborate with data engineering
and lines of business to build data and machine learning
products. Users achieve faster time-to-value with Databricks by
creating analytic workflows that go from ETL through interactive
exploration. We also make it easier for users to focus on their
data by providing a fully managed, scalable, and secure cloud
infrastructure that reduces operational complexity and total cost
of ownership.

To learn how you can build scalable, real-time data and
machine learning pipelines:

Learn More

SCHEDULE A PERSONALIZED DEMO SIGN-UP FOR A FREE TRIAL

© Databricks 2018. All rights reserved. Apache, Apache Spark, Spark and the Spark logo
are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use 11

https://pages.databricks.com/contact-us.html
https://databricks.com/try-databricks
http://www.apache.org/
https://databricks.com/privacy-policy
https://databricks.com/terms-of-use
http://dbricks.co/2eI3AQZ

